找回密码
 注册
查看: 1946|回复: 0

R语言:Theoph()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-16 17:38:21 | 显示全部楼层 |阅读模式
Theoph(datasets)
Theoph()所属R语言包:datasets

                                        Pharmacokinetics of Theophylline
                                         茶碱的药代动力学

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The Theoph data frame has 132 rows and 5 columns of data from
Theoph数据框有132行和第5列数据


用法----------Usage----------





格式----------Format----------

This object of class c("nfnGroupedData", "nfGroupedData",     "groupedData", "data.frame") containing the following columns:
本类c("nfnGroupedData", "nfGroupedData",     "groupedData", "data.frame")包含下列对象:

an ordered factor with levels 1, ..., 12 identifying the subject on whom the observation was made.  The ordering is by increasing maximum concentration of theophylline observed.
与水平排列的因素1,12鉴定人受观察。排序是通过增加观察茶碱浓度最高。

weight of the subject (kg).
主体重量(公斤)。

dose of theophylline administered orally to the subject (mg/kg).
剂量茶碱口服的主题(毫克/千克)。

time since drug administration when the sample was drawn (hr).
当样本是自药品监督管理(HR)。

theophylline concentration in the sample (mg/L).
样品中茶碱浓度(毫克/升)。


Details

详情----------Details----------

Boeckmann, Sheiner and Beal (1994) report data from a study by Dr. Robert Upton of the kinetics of the anti-asthmatic drug theophylline.  Twelve subjects were given oral doses of theophylline then serum concentrations were measured at 11 time points over the next 25 hours.
伯克曼,略•申纳尔和比尔(1994)从一个由罗伯特·厄普顿博士的抗哮喘药物茶碱动力学的研究报告数据。 12名受试者口服剂量茶碱的血药浓度在11个时间点的测量,在未来的25小时内。

These data are analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (2000) using a two-compartment open pharmacokinetic model, for which a self-starting model function, SSfol, is available.
使用这些数据分析,大卫和Giltinan(1995)和皮涅罗和贝茨(2000)二室开放动力学模型,模型的自启动功能,SSfol,可用。

This dataset was originally part of package nlme, and that has methods (including for [, as.data.frame, plot and print) for its grouped-data classes.
此数据集原是包nlme部分,并具有分组数据类的方法(包括[,as.data.frame,plot和print) 。


源----------Source----------

Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), NONMEM Users Guide: Part V, NONMEM Project Group, University of California, San Francisco.
伯克曼,AJ,略•申纳尔,LB和比尔,SL,NONMEM法用户指南(1994):第五部分,项目组NONMEM法,加州大学,旧金山。

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data, Chapman & Hall (section 5.5, p. 145 and section 6.6, p. 176)
大卫,研究和Giltinan的,DM(1995)重复测量数据的非线性模型,查普曼和霍尔(145,5.5节和6.6节,176)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer (Appendix A.29)
皮涅伊罗JC和贝茨,DM(2000)S和S-PLUS的混合效应模型,斯普林格(附录A.29)


参见----------See Also----------

SSfol
SSfol


举例----------Examples----------


require(stats); require(graphics)

coplot(conc ~ Time | Subject, data = Theoph, show.given = FALSE)
Theoph.4 <- subset(Theoph, Subject == 4)
fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
           data = Theoph.4)
summary(fm1)
plot(conc ~ Time, data = Theoph.4,
     xlab = "Time since drug administration (hr)",
     ylab = "Theophylline concentration (mg/L)",
     main = "Observed concentrations and fitted model",
     sub  = "Theophylline data - Subject 4 only",
     las = 1, col = 4)
xvals <- seq(0, par("usr")[2], length.out = 55)
lines(xvals, predict(fm1, newdata = list(Time = xvals)),
      col = 4)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-2 16:40 , Processed in 0.027655 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表