cusp-package(cusp)
cusp-package()所属R语言包:cusp
Cusp Catastrophe Modeling
尖点突变模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fits cusp catastrophe to data using Cobb's maximum likelihood method with a different algorithm. The package contains utility functions for plotting, and for comparing the model to linear regression and logistic curve models. The package allows for multivariate response subspace modelling in the sense of the GEMCAT software of Oliva et al.
适用于数据使用不同的算法Cobb的最大似然法与尖点突变。该软件包中包含的效用函数绘图,模型,线性回归和Logistic曲线模型进行比较。包允许在这个意义上的GEMCAT软件奥利瓦等多元响应子空间建模。
Details
详细信息----------Details----------
</table> This package helps fitting Cusp catastrophy models to data, as advanced in Cobb et al. (1985). The main functions are
</ table>这个包可以帮助装修尖灾难讯息的数据模型,先进的Cobb等人。 (1985)。其主要功能
</table>
</ TABLE>
(作者)----------Author(s)----------
Raoul Grasman <rgrasman@uva.nl>
参考文献----------References----------
L. Cobb and S. Zacks (1985) Applications of Catastrophe Theory for Statistical Modeling in the Biosciences (article), Journal of the American Statistical Association, 392:793–802.
P. Hartelman (1996). Stochastic Catastrophy Theory. Unpublished PhD-thesis.
H. L. J. van der Maas, R. Kolstein, J van der Pligt (2003). Sudden Transitions in Attitudes, Sociological Methods \& Research, 32:125-152.
Oliva, DeSarbo, Day, \& Jedidi. (1987) GEMCAT : A General Multivariate Methodology for Estimating Catastrophe Models, Behavioral Science, 32:121-137.
R. P. P. P. Grasman, H. L. J. van der Maas, \& E-J. Wagenmakers (2009). Fitting the Cusp Catastrophe in R: A cusp Package Primer. Journal of Statistical Software 32(8), 1-28. URL http://www.jstatsoft.org/v32/i08/.
实例----------Examples----------
# fitting cusp to cusp data[配件风口浪尖风口浪尖数据]
x <- rcusp(100, alpha=0, beta=1)
fit <- cusp(y ~ x, alpha ~ 1, beta ~ 1)
print(fit)
# example with regressors[例如,回归系数]
x1 = runif(150)
x2 = runif(150)
z = Vectorize(rcusp)(1, 4*x1-2, 4*x2-1)
data <- data.frame(x1, x2, z)
fit <- cusp(y ~ z, alpha ~ x1+x2, beta ~ x1+x2, data)
print(fit)
summary(fit)
## Not run: [#不运行:]
plot(fit)
cusp3d(fit)
## End(Not run)[#(不执行)]
# use of OK[使用OK]
npar <- length(fit$par)
## Not run: [#不运行:]
while(!fit$OK) # refit if necessary until convergence is OK[如果必要的改装,直到收敛OK]
fit <- cusp(y ~ z, alpha ~ x1+x2, beta ~ x1+x2, data, start=rnorm(npar))
## End(Not run)[#(不执行)]
# example 1 from paper[例如,从纸]
data(attitudes)
data(attitudeStartingValues)
fit.attitudes <- cusp(y ~ Attitude, alpha ~ Orient + Involv, beta ~ Involv,
data = attitudes, start=attitudeStartingValues)
summary(fit.attitudes)
plot(fit.attitudes)
cusp3d(fit.attitudes, B = 0.75, Y = 1.35, theta = 170, phi = 30, Yfloor = -9)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|