找回密码
 注册
查看: 5120|回复: 3

生物信息学 ——药物生物信息学 李霞主编

[复制链接]
发表于 2011-1-21 03:02:34 | 显示全部楼层 |阅读模式
药物生物信息学

PHARMACEUTICAL BIOINFORMATICS

人体疾病的发生主要是各种原因造成的代谢途径失衡或调节代谢速度的信号通路失衡,药物的主要作用模式是直接或间接调整这些疾病相关物质的稳态水平。目前已有很多免费数据库提供已知的药物靶点及其配体类药物的数据及药物毒副作用的数据。发掘和确认靶点是发现新药的第一步。分析疾病相关的基因组和基因型数据、表达序列特征、反向对接等策略可用于发掘新靶点,并采用多种技术多方面验证确认靶点有效性。提取小分子药物结构特征用于建立其药理活性与结构特征的联系是药物发现的重要方向;基于分子对接判断亲和力、基于ADME-tox预测成药性是快速低成本发现有效新药的重要策略。对蛋白质类大分子药物,预测其免疫原性和对应抗原表位是提高其成药性的重要步骤;基于单抗中结构域保持、结构组装和化学修饰进行结构优化是提高治疗性单抗药理活性的重要手段。基于基因型的关联分析,是预测药效和安全性的有效手段。在药物发现的过程中需要综合利用生物信息学技术。
Summary
Disorders of metabolic and signaling pathways cause common diseases; drugs act to initiate desired or repair disordered pathways. Many databases are available on targets and ligands, adverse activities of common drugs. Discovering and validating targets are generally required for discovering drugs. Analyses of genomic data and genotypes, expression sequence profiles, reversal docking are useful to mine targets for comprehensive validation. Of small ligand drugs, extraction and correlation of their structural properties with pharmacological actions play important roles in their discovery; virtual screening based on affinities predicted via docking and ADME-tox effects help enhance pharmaceutical significance of candidate ligands. Of protein drugs, predictions of their immunogenicity and epitopes help enhance their pharmaceutical values. Optimization of McAb structures based on reservation and assembly of domains besides chemical modification enhance their pharmacological actions. Correlation analyses based on genotypes help predict potency and safety. Drug discovery requires integrated platform of bioinformatics.
(廖

茆灿泉
魏冬青
王靖方)


主要参考文献
1.
Blake R. A. Target validation in drug discovery. Methods Mol Biol,2007, 356: 367-77.
2.
Kumar P., Han B. C., Shi Z., et al. Update of KDBI: Kinetic Data of Bio-molecular Interaction database. Nucleic Acids Res,2009, 37(Database issue): D636-41.
3.
Bottiger Y., Laine K., Andersson M. L., et al. SFINX-a drug-drug interaction database designed for clinical decision support systems.
Eur J Clin Pharmacol,2009, 65(6): 627-33.
4.
Han J. D., Bertin N., Hao T., et al.
Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature,2004, 430(6995): 88-93.
5.
Jeong H., Tombor B., Albert R., et al. The large-scale organization of metabolic networks. Nature,2000, 407(6804): 651-4.
6.
Gao Z., Li H., Zhang H., et al. PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics,2008, 9: 104.
7.
Hu G., Agarwal P. Human disease-drug network based on genomic expression profiles. PLoS One,2009, 4(8): e6536.
8.
Imming P., Sinning C.,Meyer A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov,2006, 5(10): 821-34.
9.
Kubinyi H. (ed.) Drug discovery technologies. In Comprehensive medicinal chemistry II (Taylor JB, Triggle DJ ed.). Beijing: Elsevier Inc. (Science Press);2006.
10.
Li J., Zhu X.,Chen J. Y. Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts. PLoS Comput Biol,2009, 5(7): e1000450.
11.
Sergeeva A., Kolonin M. G., Molldrem J. J., et al. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev,2006, 58(15): 1622-54.
12.
Lee J. K., Williams P. D.,Cheon S. Data mining in genomics. Clin Lab Med,2008, 28(1): 145-66, viii.
13.
Li Q.,Lai L. Prediction of potential drug targets based on simple sequence properties. BMC Bioinformatics,2007, 8: 353.
14.
Lin H. H., Zhang G. L., Tongchusak S., et al. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics,2008, 9 Suppl 12: S22.
15.
Metcalf BW, Dillon S. Target validation in drug discovery. Beijing: Science Press (Elsevier, Ltd.); 2007.
16.
Nettles J. H., Jenkins J. L., Bender A., et al.
Bridging chemical and biological space: "target fishing" using 2D and 3D molecular descriptors. J Med Chem,2006, 49(23): 6802-10.
17.
Overington J. P., Al-Lazikani B.,Hopkins A. L. How many drug targets are there? Nat Rev Drug Discov,2006, 5(12): 993-6.
18.
Reddy A. S., Amarnath H. S., Bapi R. S., et al. Protein ligand interaction database (PLID). Comput Biol Chem,2008, 32(5): 387-90.
19.
Rooseboom M., Commandeur J. N.,Vermeulen N. P. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev,2004, 56(1): 53-102.
20.
Schadt E. E., Friend S. H.,Shaywitz D. A. A network view of disease and compound screening. Nat Rev Drug Discov,2009, 8(4): 286-95.
21.
Schellhammer I.,Rarey M. TrixX: structure-based molecule indexing for large-scale virtual screening in sublinear time. J Comput Aided Mol Des,2007, 21(5): 223-38.
22.
Simmons D. L. What makes a good anti-inflammatory drug target? Drug Discov Today,2006, 11(5-6): 210-9.
23.
Thygesen P., Macheras P.,Van Peer A. Physiologically-based PK/PD modelling of therapeutic macromolecules. Pharm Res,2009, 26(12): 2543-50.
24.
Towbin H., Bair K. W., DeCaprio J. A., et al. Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J Biol Chem,2003, 278(52): 52964-71.
25.
Vinatier V., Soulere L.,Hoffmann P. Esterase-activated chromane-sydnonimine prodrug hybrids. Nitric Oxide,2006, 15(4): 363-9.
26.
Wallach I.,Lilien R. The protein-small-molecule database, a non-redundant structural resource for the analysis of protein-ligand binding. Bioinformatics,2009, 25(5): 615-20.
27.
Watanabe T., Kamisaki Y., Bian K., et al.
Molecular targets of drugs: convergence and divergence. Shanghai: Shanghai University of T.C.M Press; 2006.
28.
Werle M.,Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids,2006, 30(4): 351-67.
29.
Wishart D. S., Knox C., Guo A. C., et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res,2008, 36(Database issue): D901-6.
30.
Zhang J. X., Huang W. J., Zeng J. H., et al. DITOP: drug-induced toxicity related protein database. Bioinformatics,2007, 23(13): 1710-2.
31.
Zhang J., Aizawa M., Amari S., et al. Development of KiBank, a database supporting structure-based drug design. Comput Biol Chem,2004, 28(5-6): 401-7.
32.
Zheng C. J., Han L. Y., Yap C. W., et al. Therapeutic targets: progress of their exploration and investigation of their characteristics. Pharmacol Rev,2006, 58(2): 259-79.
33.
Zhu J., Zhang B.,Schadt E. E. A systems biology approach to drug discovery.
Adv Genet,2008, 60: 603-35.
34.
Zhu J., Wiener M. C., Zhang C., et al.
Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol,2007, 3(4): e69.
35.
Zhu S., Okuno Y., Tsujimoto G., et al. Application of a New Probabilistic Model for Mining Implicit Associated Cancer Genes from OMIM and Medline.
Cancer Inform,2007, 2: 361-71.
36.
Zheng F., Yang W., Ko M. C., et al.
Most efficient cocaine hydrolase designed by virtual screening of transition states. J Am Chem Soc,2008, 130(36): 12148-55.
37.
Pan Y., Gao D., Yang W., et al. Free energy perturbation (FEP) simulation on the transition states of cocaine hydrolysis catalyzed by human butyrylcholinesterase and its mutants. J Am Chem Soc,2007, 129(44): 13537-43.
38.
Bosch T. M. Pharmacogenomics of drug-metabolizing enzymes and drug transporters in chemotherapy. Methods Mol Biol,2008, 448: 63-76.
39.
Efferth T.,Volm M. Pharmacogenetics for individualized cancer chemotherapy. Pharmacol Ther,2005, 107(2): 155-76.
40.
Bosch T. M., Meijerman I., Beijnen J. H., et al. Genetic polymorphisms of drug-metabolising enzymes and drug transporters in the chemotherapeutic treatment of cancer.
Clin Pharmacokinet,2006, 45(3): 253-85.
41.
Iida A., Saito S., Sekine A., et al.
Japanese single nucleotide polymorphism database for 267 possible drug-related genes. Cancer Sci,2006, 97(1): 16-24.
42.
Robert J., Morvan V. L., Smith D., et al. Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol,2005, 54(3): 171-96.
43.
Licino J, Wong M.L.
药物基因组学-寻求个性化治疗. 蒋华良译. 北京: 科学出版社; 2005.
44.
冯新港. 免疫信息学: 原理及其应用. 上海:上海科学技术出版社; 2009.
45.
约翰•加斯泰格尔, 托马斯•恩格尔. 化学信息学教程.梁逸曾, 徐峻,姚建华等译. 北京: 化学工业出版社; 2005.
46.
李仁利. 药物构效关系. 北京:中国医药科技出版社; 2004.
回复

使用道具 举报

发表于 2012-5-12 22:30:16 | 显示全部楼层
谢谢分享,学习了!!!
回复 支持 反对

使用道具 举报

发表于 2013-5-31 21:44:45 | 显示全部楼层
{:soso_e163:}{:soso_e178:}{:soso_e179:}
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-21 17:19 , Processed in 0.025497 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表