tigre-package(tigre)
tigre-package()所属R语言包:tigre
tigre - Transcription factor Inference through Gaussian process Reconstruction of Expression
蒂格雷 - 高斯重建过程中的表达转录因子推断
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This package implements the method of Gao et al. (2008) and Honkela et al. (2010) for Gaussian process modelling single input motif regulatory systems with time-series expression data. The method can be used to rank potential targets of transcription factors based on such data.
这个包实现了高等法。 (2008年)和Honkela等。 (2010)为高斯过程建模单输入主题与时间序列表达数据的监管系统。该方法可用于排名基于这些数据的转录因子的潜在目标。
Details
详情----------Details----------
For details of using the package please refer to the Vignette.
包使用的详细信息,请参阅的小插曲。
作者(S)----------Author(s)----------
Antti Honkela, Pei Gao, Jonatan Ropponen, Miika-Petteri Matikainen, Magnus Rattray, Neil D. Lawrence
Maintainer: Antti Honkela <antti.honkela@hiit.fi>
参考文献----------References----------
tigre: Transcription factor Inference through Gaussian process Reconstruction of Expression for Bioconductor. Bioinformatics 27(7):1026-1027, 2011. DOI: 10.1093/bioinformatics/btr057.
Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities. Bioinformatics 24(16):i70–i75, 2008. DOI: 10.1093/bioinformatics/btn278.
E.~E.~M. Furlong, N.~D. Lawrence, and M.~Rattray. Model-based method for transcription factor target identification with limited data. Proc Natl Acad Sci USA 107(17):7793-7798, 2010. DOI: 10.1073/pnas.0914285107.
参见----------See Also----------
puma
puma
举例----------Examples----------
# Load a mmgmos preprocessed fragment of the Drosophila developmental[加载的果蝇发育mmgmos预处理片段]
# time series[时间序列]
data(drosophila_gpsim_fragment)
# Get the target probe names[获取目标探测名称]
library(annotate)
aliasMapping <- getAnnMap("ALIAS2PROBE",
annotation(drosophila_gpsim_fragment))
twi <- get('twi', env=aliasMapping)
fbgnMapping <- getAnnMap("FLYBASE2PROBE",
annotation(drosophila_gpsim_fragment))
targetProbe <- get('FBgn0035257', env=fbgnMapping)
# Learn the model[学习模式]
model <- GPLearn(drosophila_gpsim_fragment,
TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE)
# Plot it[图]
GPPlot(model, nameMapping=getAnnMap("FLYBASE",
annotation(drosophila_gpsim_fragment)))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|