fsva(sva)
fsva()所属R语言包:sva
Single sample surrogate variable correction for prediciton problems.
单一样本的替代变量校正prediciton问题。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
fsva corrects training databases and performs "single-sample" correction on new samples for prediction problems. The effect of surrogate variables is removed from the training database which can then be used to build a predictor. The new samples are corrected individually to account for batch effects when the group status is unknown.
fsva纠正培训数据库,并执行“单样本”修正预测问题的新样本。代理变量的影响后,从训练数据库,它可以被用来建立一个预测。新的样品被纠正个别批次的影响时,该组的状态是未知。
用法----------Usage----------
fsva(dbdat,mod,sv,newdat=NULL)
参数----------Arguments----------
参数:dbdat
A m genes by n arrays matrix of expression data from the database/training data
从数据库/训练数据由n阵列基因表达数据矩阵M基因
参数:mod
The model matrix for the terms included in the analysis for the training data
训练数据分析模型矩阵
参数:sv
The surrogate variable object created by running sva on dbdat using mod.
代理变量创建的对象上运行dbdat SVA使用模。
参数:newdat
(Optional) A set of test samples to be adjusted using the training database
(可选)测试样本集训练数据库的使用进行调整
Details
详情----------Details----------
Frozen surrogate variable analysis (fsva) can be applied to remove batch effects for prediction problems.
可应用于冷冻替代变量分析(fsva),消除一批影响预测问题。
值----------Value----------
A list containing:
一份列表,列出:
参数:db
An adjusted version of the training database where the effect of batch/expression heterogeneity has been removed)
一个培训批次/表达的异质性的影响已被删除的数据库调整后的版本)
参数:new
An adjusted version of the new samples, adjusted one at a time using the fsva methodology.
调整后的版本,一个新的样本调整在使用fsva方法之一。
作者(S)----------Author(s)----------
Jeffrey T. Leek <a href="mailto:jleek@jhsph.edu">jleek@jhsph.edu</a>
参考文献----------References----------
参见----------See Also----------
sva, irwsva.build, twostepsva.build, num.sv
sva,irwsva.build,twostepsva.build,num.sv
举例----------Examples----------
## Not run: [#无法运行:]
## Load data[#将数据]
library(bladderbatch)
library(pamr)
data(bladderdata)
## Obtain phenotypic data[#获取表型数据。]
pheno = pData(bladderEset)
edata = exprs(bladderEset)
batch = pheno$batch
mod = model.matrix(~as.factor(cancer), data=pheno)
## Build the training and test sets[#生成训练集和测试集。]
set.seed(12354)
trainIndicator = sample(1:57,size=30,replace=F)
testIndicator = (1:57)[-trainIndicator]
trainData = edata[,trainIndicator]
testData = edata[,testIndicator]
trainPheno = pheno[trainIndicator,]
testPheno = pheno[testIndicator,]
# Fit the sva model to the training set[符合广电模型的训练集]
trainMod = model.matrix(~cancer,data=trainPheno)
trainMod0 = model.matrix(~1,data=trainPheno)
trainSv = sva(trainData,trainMod,trainMod0)
#fsva correct and train[fsva正确和列车]
fsvaobj = fsva(trainData,trainMod,trainSv,testData)
mydataSv = list(x=fsvaobj$db,y=trainPheno$cancer)
mytrainSv = pamr.train(mydataSv)
table(pamr.predict(mytrainSv,fsvaobj$new,threshold=1),testPheno$cancer)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|