runBioHMM(snapCGH)
runBioHMM()所属R语言包:snapCGH
This function implements the BioHMM
这个功能实现的BioHMM
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function reads in a dataset of log2 ratios and the corresponding clone and covariate information. It calculates a heterogeneous HMM when there are 1,2,3,4 or 5 underlying states and chooses between them using either the AIC or BIC. It then assigns clones using a modified version of the Viterbi algorithm.
此功能读取log2比例和相应的克隆和协信息的数据集。它计算的异构HMM的有1,2,3,4或5的基本状态和它们之间的选择使用的AIC或者BIC。然后将克隆用Viterbi算法的修改后的版本。
用法----------Usage----------
runBioHMM(input, useCloneDists = TRUE, covariates, criteria="AIC", delta=NA
,var.fixed=FALSE, epsilon = 1e-06, numiter = 30000)
参数----------Arguments----------
参数:input
An object of class MAListor SegList
一个对象类MAList或SegList
参数:useCloneDists
Boolean stating whether the distance between clones should be incorportated into the HMM. If false then the HMM becomes homogeneous.
布尔说明克隆之间的距离是否应incorportated的HMM。如果为false的HMM变得均匀。
参数:covariates
This is a dataframe containing information about covariate factors. The first two columns should be Chrom (giving the chromosome on which a clone is located) and Mb (giving the position of the chromosome along a particular chromosome in Megabases). The order should be the same as that described above with the following crucial difference. No covariate information about the first clone is used in the segmentation. Hence, for each chromosome, there should be one less row in the covariate dataframe than in the datainfo dataframe corresponding to this missing chromosome. This is important if the transition matrix is to be calculated correctly.
这是一个dataframe包含有关协因素的信息。前两列应该CHROM(给克隆位于染色体上)和MB(沿染色体的一个特定染色体碱基的位置)。的顺序应该是相同的,上面介绍了以下关键区别。没有关于第一个克隆协信息用于分割。因此,每个染色体,应该是少了一个比的协dataframe行对应到这个缺失染色体在datainfo dataframe。这是很重要的,如果是正确计算过渡矩阵。
参数:criteria
Options are AIC or BIC depending upon which we want to use to distinguish between the number of states
选项是AIC或者BIC的,这取决于我们想要使用的国家的数目来区分
参数:delta
A variable to be assigned if the BIC is used.
如果使用BIC是一个变量被分配。
参数:var.fixed
Logical variable - TRUE if you want to tie the variance to be the same across all states. Defaults to FALSE
逻辑变量 - 如果你要配合的方差是相同横跨所有国家。默认为false
参数:epsilon
Stopping criterion for the optimization algorithm.
优化算法的停止准则。
参数:numiter
Number of iterations to be used in the optimization algorithm.
要在优化算法中使用的迭代数。
值----------Value----------
The model returns an object of class SegList.
该模型类SegList返回一个对象。
作者(S)----------Author(s)----------
John Marioni and Mike Smith
参考文献----------References----------
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|