hmap.eset(simpleaffy)
hmap.eset()所属R语言包:simpleaffy
Draw a heatmap from an AffyBatch object
绘制从AffyBatch对象的热图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given either an AffyBatch draw a heatmap.
鉴于一个AffyBatch“绘制热图。
用法----------Usage----------
hmap.eset(x,probesets,samples=1:length(sampleNames(x)),scluster=standard.pearson,pcluster=standard.pearson,slabs=sampleNames(x)[samples],plabs,col="bwr",min.val=NULL ,max.val=NULL,scale=FALSE,spread=6,by.fc=F,sdev=NULL,show.legend=T,title=NULL,cex=0.5)
参数----------Arguments----------
参数:x
The AffyBatch object to get the expression data from
AffyBatch对象得到表达数据
参数:probesets
What probesets to plot, defaults to all of them
,什么probesets图,默认到所有这些
参数:samples
Which samples to plot
样品绘制
参数:scluster
The function to use to cluster the samples by. Can also be a dendrogram object.
该功能使用聚类样本。也可以是一个树状对象。
参数:pcluster
The function to use to cluster the probesets by. Can also be a dendrogram object.
该功能使用到聚类中的probesets。也可以是一个树状对象。
参数:slabs
Labels for the sample axis
样品轴的标签
参数:plabs
Labels for the probeset axis defaults to geneNames(x)
标签的probeset轴默认为geneNames(X)
参数:col
Vector of colour values to use (see below)
媒介使用的颜色值(见下文)
参数:min.val
The minimum intensity to plot
最低强度绘制
参数:max.val
The maximum intensity to plot
最大强度绘制
参数:scale
Scale each gene's clouring based on standard deviation (See below)
缩放每个基因的clouring,基于标准偏差(见下文)
参数:spread
If the data is scaled, how many standard deviations (or fold changes) either way should we show. If no scaling, then does nothing
如果数据缩放,我们应该显示多少个标准差(或倍数变化)无论哪种方式。如果不进行缩放,然后什么也不做
参数:by.fc
If the data is scaled, scale by s.d. or by fold.change?
如果数据缩放,规模由S.D.或fold.change?
参数:sdev
A vector of standard deviaitions for each gene to be plotted. If no value is supplied these are worked out from the data.
每个基因的标准deviaitions向量绘制。如果没有提供值,这些都是从数据。
参数:show.legend
Draw a scale on the graph and show the title if supplied
在图上画一个规模和显示标题(如果提供)
参数:title
The title of the graph
图的标题
参数:cex
Character expansion
字符扩展
Details
详情----------Details----------
Takes an AffyBatch object and plots a heatmap. At its simplest, all that is required is an AffyBatch object (as calculated by call.exprs) and a vector supplying the probesets to plot. These can be specified by name, as an integer index or as a vector of TRUEs and FALSES. The function will try to do something sensible with the labels. If it fails you will need to specify this with plabs. The function will then draw a heatmap, coloured blue-white-red in increasing intensity, scaled so that 100
注意到AffyBatch对象,绘制热图。在其最简单的,所有需要的是一个AffyBatch对象(call.exprs计算)和一个向量提供的probesets,绘图。这些可以指定的名字,作为一个整数索引或一个的TRUES和FALSES向量。该函数将尝试做一些明智的标签。如果失败,你会需要到指定与plabs这个。然后绘制函数将1热图,彩色在提高强度的蓝白色,红色,缩放,使100
Col can be used to change the colouring. "bwr" specifies blue-white-red, "rbg" specifies red-black-green, and "ryw" specifies red-yellow-white. Alternatively, a vector of arbitrary colours can be supplied (try rainbow(21), for example).
COL可以用来改变的着色。 “沸水堆”,指定红,蓝白色的“RBG”指定红黑绿,和“ryw”指定红,黄,白。另外,一个任意颜色的向量可以提供的(尽量rainbow(21),例如)。
The clustering method can also be changed by supplying, either, a function that takes a matrix of expression values and returns an hclust or dendrogram object, or alternatively, an hclust or dendrogram object itself. Setting either of these to NULL will stop the heatmap being clustered on that axis.
聚类分析方法也可以改变,或者说,通过提供一个函数,表达式的值矩阵和返回hclust或dendrogram对象,或者一个hclust或<X >对象本身。上述任一设置为NULL,将停止该轴聚集的热图。
Scaling is somewhat more complex. If scale is TRUE, then each gene is coloured independently, on a scale based on its standard deviation. By default this is calculated for the samples that are being plotted, unless a value is supplied for sdev – in which case this should be a vector of standard deviations, one for each probeset being plotted (and in the same order). This scaling is done after the clustering. For more details on how all of this works see the website http://bioinf.picr.man.ac.uk/simpleaffy and also look at hmap.pc which uses the scaling to plot transcripts identified as being differentially expressed.
缩放是较为复杂。如果规模为TRUE,那么每一个基因是彩色的独立,其标准偏差为基础的规模。默认情况下,这是计算正在策划,除非价值为发展局局长提供的样本 - 在这种情况下,这应该是一个标准偏差的向量,为每个正在绘制(在同一顺序)probeset之一。缩放完成后的聚类。网站http://bioinf.picr.man.ac.uk/simpleaffy本作品都看到更多细节,也看hmap.pc使用扩展到鉴定差异表达的图成绩单。
值----------Value----------
Returns an (invisible) list containing the dendrograms used for samples and probesets
返回(无形的)列表,其中包含样品和probesets使用的聚类
作者(S)----------Author(s)----------
Crispin J Miller
参见----------See Also----------
hmap.pc blue.white.red.cols standard.pearson
hmap.pcblue.white.red.colsstandard.pearson
举例----------Examples----------
## Not run: [#无法运行:]
eset.mas <- call.exprs(eset,"mas5")
hmap.eset(eset.mas,1:100,1:6,col="rbg")
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|