找回密码
 注册
查看: 641|回复: 0

R语言 sigPathway包 calculatePathwayStatistics()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 14:17:03 | 显示全部楼层 |阅读模式
calculatePathwayStatistics(sigPathway)
calculatePathwayStatistics()所属R语言包:sigPathway

                                        Calculate the NTk and NEk statistics
                                         计算NTK和NEK统计

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Calculates the NTk and NEk statistics and the corresponding p-values and q-values for each selected pathway.
计算NTK和NEK统计和相应的p值,为每个选定的途径和Q值。


用法----------Usage----------


calculate.NTk(tab, phenotype, gsList, nsim = 1000,
              ngroups = 2, verbose = FALSE, alwaysUseRandomPerm = FALSE)
calculate.NEk(tab, phenotype, gsList, nsim = 1000,
              weightType = c("constant", "variable"),
              ngroups = 2, verbose = FALSE, alwaysUseRandomPerm = FALSE)



参数----------Arguments----------

参数:tab
a numeric matrix of expression values, with the rows and columns representing probe sets and sample arrays, respectively
数字矩阵表达式的值,代表探针台和样品阵列的行和列,分别为


参数:phenotype
a numeric (or character if ngroups >= 2) vector indicating the phenotype
一个数字(或字符,如果ngroups> = 2)向量表示的表型


参数:gsList
a list containing three vectors from the output of the selectGeneSets function
一个列表,其中包含三个向量从selectGeneSets函数的输出,


参数:nsim
an integer indicating the number of permutations to use
一个整数,指示的使用数量排列


参数:weightType
a character string specifying the type of weight to use when calculating NEk statistics
一个字符串,指定类型的重量计算NEK统计时使用


参数:ngroups
an integer indicating the number of groups in the matrix
一个整数,指示组在矩阵


参数:verbose
a boolean to indicate whether to print debugging messages to the R console
一个布尔值,指示是否打印调试消息的R控制台


参数:alwaysUseRandomPerm
a boolean to indicate whether the algorithm can use complete permutations for cases where nsim is greater than the total number of unique permutations possible with the phenotype vector
一个布尔值,表明该算法是否可以使用完整的情况排列nsim是phenotype向量大于独特的排列总数可能


Details

详情----------Details----------

These functions calculate the NTk and NEk statistics and the corresponding p-values and q-values for each selected pathway.  The output of both functions should be together to rank top pathways with the rankPathways function.
这些功能的NTK和NEK统计和相应的P值和Q值计算每个选定的途径。这两个函数的输出应该是一起排名rankPathways功能的顶级途径。


值----------Value----------

A list containing
一份列表,列出


参数:ngs
number of gene sets
基因组数


参数:nsim
number of permutations performed
数进行排列


参数:t.set
a numeric vector of Tk/Ek statistics
TK / EK统计的数字向量


参数:t.set.new
a numeric vector of NTk/NEk statistics
NTK / NEK统计的数字向量


参数:p.null
the proportion of nulls
空值的比例


参数:p.value
a numeric vector of p-values
数字向量的p值


参数:q.value
a numeric vector of q-values
数字向量的Q值


作者(S)----------Author(s)----------


Lu Tian, Peter Park, and Weil Lai



参考文献----------References----------

P.J. (2005)  Discovering statistically significant pathways in expression profiling studies.  Proceedings of the National Academy of Sciences of the USA, 102, 13544-9.


举例----------Examples----------


## Load in filtered, expression data[#加载在过滤数据,表达]
data(MuscleExample)

## Prepare the pathways to analyze[#准备的途径分析]
probeID <- rownames(tab)
gsList <- selectGeneSets(G, probeID, 20, 500)

## Calculate NTk and weighted NEk for each gene set[#计算每个基因组NTK和加权NEK]
## * Use a higher nsim (e.g., 2500) value for more reproducible results[#*使用较高的nsim价值更多的可重复性的结果(例如,2500)]
nsim <- 1000
ngroups <- 2
verbose <- TRUE
weightType <- "constant"
methodNames <- c("NTk", "NEk")
npath <- 25
allpathways <- FALSE
annotpkg <- "hgu133a.db"

res.NTk <- calculate.NTk(tab, phenotype, gsList, nsim, ngroups, verbose)
res.NEk <- calculate.NEk(tab, phenotype, gsList, nsim, weightType,
                         ngroups, verbose)

## Summarize results[#汇总结果]
res.pathways <- rankPathways(res.NTk, res.NEk, G, tab, phenotype,
                             gsList, ngroups, methodNames, npath, allpathways)
print(res.pathways)

## Get more information about the probe sets' means and other statistics[#获取更多探针集的手段和其他统计信息]
## for the top pathway in res.pathways[#顶部在res.pathways的途径]
statList <- calcTStatFast(tab, phenotype, ngroups)
gpsList <-
  getPathwayStatistics(tab, phenotype, G, res.pathways$IndexG,
                       ngroups, statList, FALSE, annotpkg)
print(gpsList[[1]])

## Write table of top-ranked pathways and their associated probe sets to[#写表和世界排名第一的途径及其相关的探针设置]
## HTML files[#HTML文件]
parameterList <-
  list(nprobes = nrow(tab), nsamples = ncol(tab),
       phenotype = phenotype, ngroups = ngroups,
       minNPS = 20, maxNPS = 500, ngs = res.NTk$ngs,
       nsim.NTk = res.NTk$nsim, nsim.NEk = res.NEk$nsim,
       weightType = weightType,
       annotpkg = annotpkg, npath = npath, allpathways = allpathways)

writeSP(res.pathways, gpsList, parameterList, tempdir(), "sigPathway_cPS",
        "TopPathwaysTable.html")


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-24 05:30 , Processed in 0.025173 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表