lociLikelihoods(segmentSeq)
lociLikelihoods()所属R语言包:segmentSeq
Evaluates the posterior likelihoods of each region defined by a
评估各区域的定义后似然性
译者:生物统计家园网 机器人LoveR
描述----------Description----------
An empirical Bayesian approach that takes a segmentation map and uses this to bootstrap posterior likelihoods on each region being a locus for each replicate group.
一个经验贝叶斯方法,需要分割图,对每个区域使用这个来引导后似然性,为每个复制组的轨迹。
用法----------Usage----------
lociLikelihoods(cD, aD, newCounts = FALSE, bootStraps = 1,
inferNulls = TRUE, nasZero = FALSE, usePosteriors =
TRUE, cl)
参数----------Arguments----------
参数:cD
A lociData object that defines a segmentation map.
一个lociData对象,它定义了分割图。
参数:aD
An alignmentData object.
alignmentData对象。
参数:newCounts
Should new counts be evaluated for the segmentation map in "cD" before calculating loci likelihoods? Defaults to FALSE
应新的罪名被评价为“CD”前计算位点的似然性分割图?默认为false
参数:bootStraps
What level of bootstrapping should be carried out on the inference of posterior likelihoods? See the baySeq function getLikelihoods.NB for a discussion of bootstrapping.
应引导水平后似然性推理进行了吗?见的baySeq功能getLikelihoods.NB为引导讨论。
参数:inferNulls
Should null regions be inferred from the gaps between segments defined by the "cD" object?
可以推断应该空区域从“CD”对象定义的段之间的差距呢?
参数:nasZero
If FALSE, any locus with a posterior likelihood "NA" in the existing segmentation map is treated as a null region for the first bootstrap; If TRUE, it is ignored for the first bootstrap.
如果为FALSE,任何与后验的可能性“NA”在现有的分割图的轨迹视为一个空区域为第一引导,如果属实,这是第一引导忽略。
参数:usePosteriors
If TRUE, the function uses the existing likelihoods to weight the prior estimation of parameters. Defaults to TRUE.
如果为TRUE,函数使用现有的似然性,重量参数事先估计。默认为true。
参数:cl
A SNOW cluster object, or NULL. See Details.
雪聚类对象,或NULL。查看详细信息。
Details
详情----------Details----------
A 'cluster' object (package: snow) may be used for parallelisation of this function when examining large data sets. Passing NULL to this variable will cause the function to run in non-parallel mode.
一个'cluster'对象(包雪),可用于研究大型数据集时,此功能的并行化。这个变量传递NULL会导致在非并行模式运行的功能。
值----------Value----------
A lociData object.
一个lociData对象。
作者(S)----------Author(s)----------
Thomas J. Hardcastle
举例----------Examples----------
# Define the chromosome lengths for the genome of interest.[定义感兴趣的基因组染色体长度。]
chrlens <- c(2e6, 1e6)
# Define the files containing sample information.[定义文件包含样本信息。]
datadir <- system.file("extdata", package = "segmentSeq")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")
# Establish the library names and replicate structure.[建立图书馆的名称和复制结构。]
libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)
# Process the files to produce an `alignmentData' object.[处理文件,以生产alignmentData“对象。]
alignData <- readGeneric(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chr1", ">Chr2"), chrlens =
chrlens, gap = 100)
# Process the alignmentData object to produce a `segData' object.[处理的alignmentData的对象产生segData“对象。]
sD <- processAD(alignData, cl = NULL)
# Use the segData object to produce a segmentation of the genome, but[使用segData对象产生的基因组的分割,但]
# without evaluating posterior likelihoods.[没有评估后的似然性。]
segD <- heuristicSeg(sD = sD, aD = alignData,
subRegion = data.frame(chr= ">Chr1", start = 1, end = 1e5),
getLikes = FALSE, cl = NULL)
# Use the lociData function to evaluate the posterior likelihoods directly.[使用lociData功能,直接以评估后的似然性。]
lociData <- lociLikelihoods(segD, aD = alignData, bootStraps = 5,
inferNulls = TRUE, cl = NULL)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|