safeplot(safe)
safeplot()所属R语言包:safe
SAFE plot
外管局图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
A SAFE plot for a given category displays the empirical distribution function for the ranked local statistics of a given category.
一个给定类别的SAFE图显示当地特定类别的排名统计的经验分布函数。
用法----------Usage----------
safeplot(safe = NULL, cat.name = NULL, c.vec = NULL, local.stats = NULL,
p.val = NULL, one.sided = NA, limits = c(-Inf,Inf), extreme = NA,
italic = FALSE, x.label = "Ranked local statistic")
用法----------Usage----------
safeplot(safe)
safeplot(safe , cat.name)
safeplot(c.vec=, local.stats= , p.val=, one.sided=, limits=,
extreme=, italic =, x.label=)
参数----------Arguments----------
参数:safe
Object of class SAFE.
对象类SAFE。
参数:cat.name
Name of the category to be plotted. If omitted, the most significant category is plotted.
要绘制的类别名称。如果省略,绘制最显着的类别。
参数:c.vec
Optional logical vector specifying membership to a gene category.
指定可选的逻辑向量的基因类别的成员。
参数:local.stats
Optional numeric vector of local statistics. Gene names should be provided as names(local.stats).
地方统计可选的数字向量。应提供基因名称为names(local.stats)。
参数:p.val
Optional numeric value of the category's empirical p-value
可选的数值类别的经验p值
参数:one.sided
Optional logical value indicating if local statistics are one-sided.
可选的逻辑值,指示当地的统计数据是片面的。
参数:limits
Limits of the shaded region in the plot on the unranked scale.
阴影区域的限制,在图上无排名的规模。
参数:extreme
Optional logical value whether only genes in the shaded region should be labeled.
可选的逻辑值应标明是否只在阴影区域的基因。
参数:italic
Optional logical value whether gene names should be italic.
可选的逻辑值是否基因的名称应该是斜体。
参数:x.label
Character string for the x-axis label.
X轴标签的字符串。
Details
详情----------Details----------
SAFE-plots are suggested as appropriate for visualizing the differential expression in a given category relative to the complementary set of genes. The empirical cumulative distribution is plotted for the ranked local statistics in the category. Tick marks are drawn along the top of the graph to indicate each gene's positions, and labeled when sufficient space permits. In this manner, genes with the most extreme local statistics can be identified as contributing to a categories significance.
安全图可视化给定类别中的差异表达基因互补相对适当的建议。该类别中的排名局部统计经验的累积分布绘制。刻度绘制沿顶部的图形来表示每个基因的位置,并标有足够的空间允许时。在这种方式中,最极端的地方统计的基因,可以认定为一个类别的意义。
作者(S)----------Author(s)----------
William T. Barry: <a href="mailto:bill.barry@duke.edu">bill.barry@duke.edu</a>
参考文献----------References----------
of functional categories in gene expression studies: a structured permutation approach, Bioinformatics 21(9) 1943–1949.
<h3>See Also</h3>
举例----------Examples----------
## Simulate a dataset with 1000 genes and 20 arrays in a 2-sample design.[#模拟2样本设计有1000个基因和20阵列的数据集。]
## The top 100 genes will be differentially expressed at varying levels[#前100个基因,将在不同程度的差异表达]
g.alt <- 100
g.null <- 900
n <- 20
data<-matrix(rnorm(n*(g.alt+g.null)),g.alt+g.null,n)
data[1:g.alt,1n/2)] <- data[1:g.alt,1n/2)] +
seq(2,2/g.alt,length=g.alt)
dimnames(data) <- list(c(paste("Alt",1:g.alt),
paste("Null",1:g.null)),
paste("Array",1:n))
## A treatment vector [#A治疗向量]
trt <- rep(c("Trt","Ctr"),each=n/2)
## 2 alt. categories and 18 null categories of size 50[#2 ALT。类别和18类50大小的空]
C.matrix <- kronecker(diag(20),rep(1,50))
dimnames(C.matrix) <- list(dimnames(data)[[1]],
c(paste("TrueCat",1:2),paste("NullCat",1:18)))
dim(C.matrix)
results <- safe(data,trt,C.matrix,Pi.mat = 100)
results
## SAFE-plot made for the first category[#安全第一类的图]
if (interactive()) {
safeplot(results,"TrueCat 1")
}
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|