GCbiasPlots(Repitools)
GCbiasPlots()所属R语言包:Repitools
Plot GC content vs. Read Counts Before Normalising, and GC content vs. Copy Estimates
气相色谱图内容与阅读之前Normalising计数,和GC含量与复制预算
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Two plots on the same plotting page are made for each sample. The top plot has estimates of copy number separated by GC content before any GC correction was applied. The bottom plot shows the copy number estimates after GC correction was applied.
每个样品相同的绘图页上的两个图。顶端的图有任何GC校正前的GC含量分离拷贝数的估计。底部图显示GC校正后的拷贝数估计。
用法----------Usage----------
## S4 method for signature 'AdjustedCopyEstimate'
GCbiasPlots(copy, y.max = NULL, pch = 19,
cex = 0.2, pch.col = "black", line.col = "red", lty = 1, lwd = 2, verbose = TRUE)
参数----------Arguments----------
参数:copy
A CopyEstimate object.
一个CopyEstimate对象。
参数:y.max
The maximum value of the y-axis of the scatter plots.
的散点图Y轴的最大值。
参数:pch
Style of points in the scatter plots.
在散点图点的风格。
参数:cex
Size of the points in the scatter plots.
散点图中的点的大小。
参数:pch.col
Colour of points in the scatter plots.
散点图中的点的颜色。
参数:line.col
Colour of regression line in each scatter plot.
在每个散点图回归直线的颜色。
参数:lty
Line type of plotted regression line.
线类型的绘制回归线。
参数:lwd
Line width of plotted regression line.
线宽为绘制回归线。
参数:verbose
Whether to print the progess of processing.
无论是打印处理陆侃。
Details
详情----------Details----------
See absoluteCN or relativeCN for how to do the GC adjusted copy number estimates. The line plotted through the scatterplots is a lowess line fit to the data points.
看到absoluteCN或relativeCN怎么做的GC调整后的拷贝数估计。该行通过绘制的散点图是LOWESS线拟合数据点。
值----------Value----------
A number of pages of scatterplots equal to the number of samples described by copy. The output should, therefore, be sent to a PDF device.
等于由copy描述的样本数量的散点图的网页数量。因此,输出应该被发送到一个PDF装置。
作者(S)----------Author(s)----------
Dario Strbenac
举例----------Examples----------
## Not run: [#无法运行:]
library(BSgenome.Hsapiens.UCSC.hg18)
library(BSgenome.Hsapiens36bp.UCSC.hg18mappability)
load("inputsReads.RData")
windows <- genomeBlocks(Hsapiens, chrs = paste("chr", c(1:22, 'X', 'Y'), sep = ''),
width = 20000)
counts <- annotationBlocksCounts(inputsReads, anno = windows, seq.len = 300)
gc.par <- GCAdjustParams(genome = Hsapiens, mappability = Hsapiens36bp,
min.mappability = 50, n.bins = 10, min.bin.size = 10,
poly.degree = 4, ploidy = c(2, 4))
abs.cn <- absoluteCN(input.windows = windows, input.counts = counts, gc.params = gc.par)
pdf("bias.pdf")
GCbiasPlots(abs.cn, y.max = 8)
dev.off()
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|