找回密码
 注册
查看: 738|回复: 0

R语言 reb包 smoothByRegion()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 12:31:36 | 显示全部楼层 |阅读模式
smoothByRegion(reb)
smoothByRegion()所属R语言包:reb

                                         reb
                                         篮板

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function “smooths” gene expression data to assist in the identification of regional expression biases.
此功能的“平滑”的基因表达数据,以协助识别区域表达的偏见。


用法----------Usage----------


reb(eset, genome, chrom = "ALL", ref = NULL, center = FALSE,
aggrfun=absMax, method = c("movbin", "supsmu", "lowess","movt"), ...)



参数----------Arguments----------

参数:eset
the expression set to analyze  
表达式设置分析


参数:genome
an associated chromLoc annotation object  
关联的chromLoc注释对象


参数:chrom
a character vector specifying the chromosomes to analyze
一个字符向量指定的染色体分析


参数:ref
a vector containing the index of reference samples from which to make comparisons. Defaults to NULL (internally referenced samples
矢量指数的参考样本,从中进行比较。默认为空(内部参考样本


参数:center
boolean - re-center gene expression matrix columns. Helpful if ref is used
布尔 - 转口中心的基因表达矩阵的列。有益的,如果ref用于


参数:aggrfun
a function to summarizes/aggregates gene expression values that map to the same locations. Defaults to the maximum absolute value absMax. If NULL, all values are included.
一个功能总结/聚合基因表达的值映射到相同的位置。默认最大绝对值absMax。如果为NULL,所有的值都包括在内。


参数:method
smoothing function to use - either "supmu", "lowess",  "movbin" or "movt".
平滑功能使用 - 无论是"supmu","lowess","movbin"或"movt"。


参数:...
additional paramaters to pass along to the smoothing function  
额外paramaters要传递给平滑功能


Details

详情----------Details----------

reb returns an eset that contains predictions of regional expression bias using data smoothing approachs. The exprSet is separated into subsets based on the genome chromLocation object and the gene expression data within the subsets is organized by genomic location and smoothed. In addition, the approx function is used to estimate data between any missing values. This was implimented so the function follows the "principles of least astonishment".   
reb返回一个ESET包含使用数据平滑接近的区域表达偏见的预测。该exprSet被分隔成基于genome chromLocation对象和亚群内的基因表达数据的基因的位置和平滑举办的亚群。此外,approx函数是用来估计缺失值之间的任何数据。这是implimented这样的功能遵循“最小惊讶原则”。

Smoothing approachs are most straightforwardly applied by comparing a set of test samples to a set of control samples.  For single color experiments, the control samples can be specified using the ref argument and the comparisons are generated internal to the reb function. This argument can also be used for two-color experiments provided both the test and control samples were run against a common reference.
平滑接近最直截了当的应用比较试验样品一套一套控制样品。对于单一颜色的实验,可以指定使用refreb函数生成的内部比较参数和控制样本。这种说法也可以用两色的实验提供的测试和控制样本运行对一个共同的参考。

If multiple clones map to the same genomic locus the aggrfun argument can be used to summarize the overlapping expression values to a single summarized value. This is can be helpful in two situtations. First, the supsum and lowess smoothing functions do not allow for duplicate values. Currently, if duplicate values are found and these smoothing functions are used, the duplicate values are simply discard. Second, if 50 copies of the actin gene are present on a the array and actin changes expression under a given condition, it may appear as though a regional expression bias exists as 50 values within a region change expression. Summarizing the 50 expression values to a single value can partially correct for this effect.
如果多个克隆映射到相同的基因位点aggrfun参数可以用来总结重叠的表达值汇总到一个单一的价值。这是可以在两个situtations很有帮助。首先,supsum和lowess平滑功能不允许重复值。目前,如果发现并使用这些平滑功能重复的值,重复值是简单地丢弃。其次,如果50份的肌动蛋白基因是存在一个数组和肌动蛋白的变化表达一个给定的条件下,它可能会出现区域表达偏见,虽然在一个区域内的变化表达为50值存在。总结50表达式的值到一个单一的值,可以部分纠正这种效果。

The idiogram package can be used to plot the regional expression bias.
可以用来绘制区域的表达偏见的idiogram包。


值----------Value----------

An exprSet
一个exprSet


作者(S)----------Author(s)----------



Kyle A. Furge, <a href="mailto:kyle.furge@vai.org">kyle.furge@vai.org</a>
Karl J. Dykema, <a href="mailto:karl.dykema@vai.org">karl.dykema@vai.org</a>




参考文献----------References----------

genomic hybridization with gene expression-based regional expression biases to identify genetic abnormalities in hepatocellular carcinoma. BMC Genomics. 2005 May 9;6(1):67. PMID: 1588246


参见----------See Also----------

movbin,idiogram  
movbin,idiogram


举例----------Examples----------



# The mcr.eset is a two-color gene expression exprSet[mcr.eset是两色的基因表达exprSet的]
# with cytogenetically complex (MCR) and normal [单元遗传学与复杂(MCR)的正常]
# control (MNC) samples which are a pooled-cell line reference.[这是一个汇集单元株参考的控制(MNC)的样品。]


data("mcr.eset")
data(idiogramExample)

## Create a vector with the index of normal samples[#创建一个向量与正常样本指数]
norms <- grep("MNC",colnames(mcr.eset@exprs))

## Smooth the data using the default 'movbin' method,[#平滑使用默认“movbin”方法的数据,]
## with the normal samples as reference[#与正常样本作为参考]

cset <- reb(mcr.eset@exprs,vai.chr,ref=norms,center=TRUE)

## Display the results with midiogram[#显示与midiogram的结果]
midiogram(cset@exprs[,-norms],vai.chr,method="i",dlim=c(-5,5),col=.rwb)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-30 14:59 , Processed in 0.029942 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表