找回密码
 注册
查看: 614|回复: 0

R语言 RCASPAR包 weights_xvBLH()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 12:08:28 | 显示全部楼层 |阅读模式
weights_xvBLH(RCASPAR)
weights_xvBLH()所属R语言包:RCASPAR

                                         A special version of STpredictor.BLH used within k-xv to predict the survival times of the kth validation group in the cross validation step.
                                         内使用K-15的一个特殊版本的STpredictor.BLH预测交叉验证步骤中的第k个验证组的生存时间。

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function is an “incomplete” version of STpredictor.BLH used within the cross validation function STpredictor_xvBLH to predicted the survival times of the subset of patients in the kth partitioning. It is not meant for use outside that function.
此功能是一个“不完整”的交叉验证函数内使用的版本STpredictor.BLHSTpredictor_xvBLH预测患者在第k个分区的子集的存活时间。这并不意味着功能外,使用。


用法----------Usage----------


weights_xvBLH(geDataS, survDataS, geDataT, survDataT, q = 1, s = 1, a = 2, b = 2, groups = 3, par, method = "BFGS", noprior = 1, extras = list())



参数----------Arguments----------

参数:geDataS
The co-variate data of the kth validation set passed on by STpredictor.xv.BLH. It is a matrix with the co-variates in the columns and the subjects in the rows. Each cell corresponds to that rowth subject's columnth co-variate's value.  
第k验证的共同变量的数据集传递STpredictor.xv.BLH。这是一个矩阵与合作中的列和行的科目的变元。每个单元格对应,该rowth题目的columnth的共同变量的值。


参数:survDataS
The survival data of the kth validation set passed on by STpredictor_xvBLH. It takes on the form of a data frame with at least have the following columns “True_STs” and “censored”, corresponding to the observed survival times and the censoring status of the subjects  consecutively. Censored patients are assigned a “1” while patients who experience an event are assigned “1”.  
第k验证的生存数据集通过对STpredictor_xvBLH。它需要一个数据框的形式,至少有下列列“True_STs”和“审查”,相应的观测到的生存时间和审查的受试者连续状态。截患者被分配了一个“1”,而谁遇到事件的患者被指定为“1”。


参数:geDataT
The co-variate data of the kth training set passed on by STpredictor_xvBLH.  
第k个训练的共同变量的数据集通过对STpredictor_xvBLH。


参数:survDataT
The survival data of the kth training set passed on by STpredictor_xvBLH.  
第k个训练生存数据集传递STpredictor_xvBLH。


参数:q
One of the two parameters on the prior distribution used on the weights (regression coefficients) in the model.  
模型中的权重(回归系数)上使用的先验分布的两个参数之一。


参数:s
The second of the two parameters on the prior distribution used on the weights (regression coefficients) in the model.  
第二先验分布的两个参数用于模型中的权重(回归系数)。


参数:a
The shape parameter for the gamma distribution used as a prior on the baseline hazards.  
作为基线的危害之前使用伽玛分布的形状参数。


参数:b
The scale parameter for the gamma distribution used as a prior on the baseline hazards.  
作为基线的危害之前使用伽玛分布的尺度参数。


参数:groups
The number of partitions along the time axis for which a different baseline hazard is to be assigned. This number should be the same as the number of initial values passed for  the baseline hazards in the beginning of the “weights_baselineH” argument.  
被分配不同的基线危险是沿时间轴的分区数。这个数字应该是通过的“weights_baselineH”的说法开始在基线危害的初始值相同。


参数:par
A single vector with the initial values of the baseline hazards followed by the weights(regression coefficients) for the co-variates.  
单矢量与共同变元的权重(回归系数)危害基线的初始值。


参数:method
The preferred optimization method. It can be one of the following: "Nelder-Mead": for the Nelder-Mead simplex algorithm. "L-BFGS-B" for the L-BFGS-B quasi-Newtonian method. "BFGS" for the BFGS quasi-Newtonian method. "CG" for the Conjugate Gradient decent method. "SANN": for the simulated annealing algorithm.  
首选的优化方法。它可以是下列之一:"Nelder-Mead":内尔德Mead单纯算法。 "L-BFGS-B"L-bfgs-B的拟牛顿方法。 "BFGS"BFGS拟牛顿方法。 "CG"共轭梯度体面的方法。 "SANN":模拟退火算法。


参数:noprior
An integer indicating the number of iterations to be done without assuming a prior on the regression coefficients.  
一个整数,表示迭代次数进行回归系数事先假设。


参数:extras
The extra arguments to passed to the optimization function optim. For further details on them, see the documentation for the optim function.  
额外的参数传递给函数的优化OPTIM。对于他们的进一步详情,请参阅为optim功能的文档。


值----------Value----------


参数:prediction
A data frame with the columns True_STs (the observed survival times), Predicted_STs (the predicted survival times), censored(the censoring status of the  patient,absolute_error(the sign-less difference between the predicted and observed survival times), PatientOrderValidation (The patient's number)
与列True_STs(观察生存时间),Predicted_STs(预测生存时间)审查(审查病人的地位,absolute_error(符号预测和观察到的存活时间之间的差异),PatientOrderValidation(该数据框病人的检测号码)


参数:est.geneweight
The estimated regression coefficients from the kth training set (geDataT,survDataT)
从第k个训练集(geDataT,survDataT)的估计回归系数


参数:est.baselineH
The estimated baseline hazards from the kth training set (geDataT, survDataT)
从第k个训练集(geDataT,survDataT)的估计基线危害


注意----------Note----------

This function is not meant to be used outside its wrapper.
此功能并不意味着将其包装外使用。


作者(S)----------Author(s)----------



Douaa Mugahid




参见----------See Also----------

STpredictor_BLH
STpredictor_BLH


举例----------Examples----------


data(Bergamaschi)
data(survData)
weights_xvBLH(geDataS=Bergamaschi[21:31, 1:2], survDataS=survData[21:31, 9:10],geDataT=Bergamaschi[1:20, 1:2],
survDataT=survData[1:20, 9:10], q = 1, s = 1, a = 2, b = 2, groups = 3, par = c(0.1, 0.1, 0.1,rep(0,2)),
method = "CG", noprior = 1, extras = list(reltol=1))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-31 11:20 , Processed in 0.020315 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表