找回密码
 注册
查看: 728|回复: 0

R语言 RCASPAR包 deriv_weight_estimator_BLH_noprior()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 12:06:49 | 显示全部楼层 |阅读模式
deriv_weight_estimator_BLH_noprior(RCASPAR)
deriv_weight_estimator_BLH_noprior()所属R语言包:RCASPAR

                                         A function that gives the derivative of the objective function of the model for gradient-based optimization algorithms without including the prior on the regression  coefficients.
                                         一个功能,使基于梯度的优化算法模型的目标函数的导数,不包括前回归系数。

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Given the necessary data, this function calculates the derivative of the objective function without a prior on the regression coefficients w.r.t. the baseline hazards and  weights(regression coefficients) in the model to be used in gradient-based optimization algorithms. This is sometimes necessary to get the optimization algorithm out of a  peaked origin where it could start.
给予必要的数据,这个函数计算的目标函数的导数不上的回归系数WRT事先基线的危害,并在该模型重量(回归系数)用于在基于梯度的优化算法。这有时是必要的,得到一个见顶的原产地,在那里它可以开始优化算法。


用法----------Usage----------


deriv_weight_estimator_BLH_noprior(survDataT, geDataT, weights_baselineH, a, b, groups)



参数----------Arguments----------

参数:survDataT
The survival data of the patient set passed on by the user. It takes on the form of a data frame with at least have the following columns “True\_STs” and  “censored”, corresponding to the observed survival times and the censoring status of the subjects consecutively. Censored patients are assigned a “1” while  patients who experience an event are assigned “1”.  
患者组的生存数据传给用户。它需要一个数据框的形式,至少有以下几列“真\ _STs”和“审查”,相应的观测到的生存时间和审查的受试者连续状态。截患者被分配了一个“1”,而谁遇到事件的患者被指定为“1”。


参数:geDataT
The co-variate data (gene expression or aCGH, etc...) of the patient set passed on by the user. It is a matrix with the co-variates in the columns and the subjects in the rows. Each cell  corresponds to that rowth subject's columnth co-variate's value.  
病人组(基因表达或aCGH等)的共同变量的数据传给用户。这是一个矩阵与合作中的列和行的科目的变元。每个单元格对应,该rowth题目的columnth的共同变量的值。


参数:weights_baselineH
A single vector with the initial values of the baseline hazards followed by the weights(regression coefficients) for the co-variates.  
单矢量与共同变元的权重(回归系数)危害基线的初始值。


参数:a
The shape parameter for the gamma distribution used as a prior on the baseline hazards.  
作为基线的危害之前使用伽玛分布的形状参数。


参数:b
The scale parameter for the gamma distribution used as a prior on the baseline hazards.  
作为基线的危害之前使用伽玛分布的尺度参数。


参数:groups
The number of partitions along the time axis for which a different baseline hazard is to be assigned. This number should be the same as the number of initial values passed for  the baseline hazards in the beginning of the “weights\_baselineH” argument.  
被分配不同的基线危险是沿时间轴的分区数。这个数字应该是通过的“权重\ _baselineH”的说法开始在基线危害的初始值相同。


值----------Value----------

A vector of the same length as the “weights\_baselineH” argument corresponding to the calculated derivatives of the objective with respect to every component of  “weights\_baselineH”.
作为“重\ _baselineH”的说法与尊重每一个组件的“砝码\ _baselineH”的目标计算的衍生工具的长度相同的向量。


注意----------Note----------

This function is in itself not very useful to the user, but is used within the function weights\_BLH.
这个功能本身并不是非常有用的用户,但在功能weights\_BLH使用。


作者(S)----------Author(s)----------



Douaa Mugahid




参考文献----------References----------

Society of Statistics, 34(2), 187-220. The extension of the Cox model to its stepwise form was adapted from: Ibrahim, J.G, Chen, M.-H. & Sinha, D. (2005). Bayesian Survival Analysis (second ed.).  NY: Springer. as well as Kaderali, Lars.(2006) A Hierarchial Bayesian Approach to Regression and its Application to Predicting Survival Times in Cancer Patients. Aachen: Shaker

参见----------See Also----------

weight_estimator_BLH_noprior, deriv_weight_estimator_BLH
weight_estimator_BLH_noprior,deriv_weight_estimator_BLH


举例----------Examples----------


data(Bergamaschi)
data(survData)
deriv_weight_estimator_BLH_noprior(survDataT=survData[1:10, 9:10], geDataT=Bergamaschi[1:10, 1:2], weights_baselineH=c(0.1,0.2,0.3,rep(0,2)), a=1.5, b=0.3, groups=3)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-31 10:58 , Processed in 0.020111 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表