找回密码
 注册
查看: 881|回复: 0

R语言 RBGL包 highlyConnSG()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 12:00:58 | 显示全部楼层 |阅读模式
highlyConnSG(RBGL)
highlyConnSG()所属R语言包:RBGL

                                        Compute highly connected subgraphs for an undirected graph
                                         计算一个无向图的连通子图

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Compute highly connected subgraphs for an undirected graph
计算一个无向图的连通子图


用法----------Usage----------


highlyConnSG(g, sat=3, ldv=c(3,2,1))



参数----------Arguments----------

参数:g
an instance of the graph class with edgemode “undirected”
graph与edgemode“无向”类的一个实例


参数:sat
singleton adoption threshold, positive integer  
单身收养的阈值,正整数


参数:ldv
heuristics to remove lower degree vertice, a decreasing sequence of positive integer  
启发式删除顶点程度较低,减少一个正整数序列


Details

详情----------Details----------

A graph G with n vertices is highly connected if its connectivity k(G) > n/2.  The HCS algorithm partitions a given graph into a set of highly connected subgraphs, by using minimum-cut algorithm recursively.  To improve performance, the approach is refined by adopting singletons, removing low degree vertices and merging clusters.   
高度连接一个具有n个顶点的图G,如果其连接K(G)> N / 2。的HCS算法分区成一套高度连通子图图,利用最小切割算法递归。为了提高性能,采用单身提炼方法,消除低度顶点和合并聚类。

On singleton adoption:  after each round of partition,  some highly connected subgraphs could be singletons (i.e., a subgraph contains only one node). To reduce the number of singletons, therefore reduce number of clusters,  we try to get "normal" subgraphs to "adopt" them.  If a singleton, s, has n  neighbours in a highly connected subgraph c, and n > sat, we add s to c.   To adapt to the modified subgraphs, this adoption process is repeated until  no further such adoption.
单身收养:每一轮分区后,一些高度连接的子图可能是单身(即一个子图只包含一个节点)。为了减少单身的数量,因此减少簇的数目,我们试图获得“正常”的子图“采取”。如果有n个单身,在一个高度连接的子Ç邻居,且n>坐,我们加s到c。以适应修改后的子图,采用过程反复进行,直到没有进一步通过。

On lower degree vertices: when the graph has low degree vertices, minimum-cut algorithm will just repeatedly separate these vertices from the rest.  To reduce such expensive and non-informative computation, we "remove" these  low degree vertices first before applying minimum-cut algorithm.   Given ldv = (d1, d2, ..., dp), (d[i] > d[i+1] > 0), we repeat the following (i from 1 to p): remove all the highly-connected-subgraph found so far;  remove vertices with degrees < di; find highly-connected-subgraphs;  perform singleton adoptions.
低度顶点:图有低度顶点时,最小截算法,只是反复分开其余这些顶点。为了减少这种昂贵的和非信息的计算,我们“删除”这些低度顶点先采用最小割算法。由于LDV =(D1,D2,...,DP),(D [I]> D [I +1]> 0),我们重申以下(我从1到p):删除所有的高连接子发现迄今删除顶点度<二,找到高度连接的子图;执行单身收养。

The Boost implementation does not support self-loops, therefore we  signal an error and suggest that users remove self-loops using the  function removeSelfLoops function. This change does affect  degree, but the original article makes no specific reference to self-loops.
Boost的实现不支持自循环,因此,我们发出错误信号,并建议用户删除自我循环使用的功能removeSelfLoops功能。这种变化的影响程度,但原来的文章没有具体提到自我循环。


值----------Value----------

A list of clusters, each is given as vertices in the graph.
聚类名单,每个图中的顶点。


作者(S)----------Author(s)----------


Li Long &lt;li.long@isb-sib.ch&gt;



参考文献----------References----------

<h3>See Also</h3>

举例----------Examples----------


con <- file(system.file("XML/hcs.gxl",package="RBGL"))
coex <- fromGXL(con)
close(con)

highlyConnSG(coex)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-31 12:46 , Processed in 0.026906 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表