qplot(qvalue)
qplot()所属R语言包:qvalue
Graphical display of qvalue objects
qvalue对象的图形显示
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Graphical display of qvalue objects
qvalue对象的图形显示
用法----------Usage----------
qplot(qobj, rng = c(0, 0.1), smooth.df = 3, smooth.log.pi0 = FALSE, ...)
## S3 method for class 'qvalue'
plot(x, ...)
参数----------Arguments----------
参数:qobj, x
Qvalue object.
qvalue对象。
参数:rng
Range of q-values to consider. Optional.
Q-值的范围来考虑。可选的。
参数:smooth.df
Number of degrees-of-freedom to use when estimating pi_0 with a smoother. Optional.
数度自由使用时,估计pi_0顺畅。可选的。
参数:smooth.log.pi0
If TRUE and pi0.method = "smoother", pi_0 will be estimated by applying a smoother to a scatterplot of log pi_0 estimates against the tuning parameter lambda. Optional.
如果是TRUE和pi0.method=“平滑”,pi_0将应用平滑的散点图估计logpi_0对调整参数lambda估计 。可选的。
参数:...
Any other arguments.
任何其他参数。
Details
详情----------Details----------
The function qplot allows one to view several plots:
在的功能qplot允许之一来查看几个图:
The estimated pi_0 versus the tuning parameter lambda.
估计pi_0与调整参数lambda。
The q-values versus the p-values
Q-值与p值
The number of significant tests versus each q-value cutoff
数目与每一个Q值的截止显著测试
The number of expected false positives versus the number of significant tests
预期误报数量与若干重大考验
This function makes fours plots. The first is a plot of the estimate of pi_0 versus its tuning parameter lambda. In most cases, as lambda gets larger, the bias of the estimate decreases, yet the variance increases. Various methods exist for balancing this bias-variance trade-off (Storey 2002, Storey & Tibshirani 2003, Storey, Taylor & Siegmund 2004). Comparing your estimate of pi_0 to this plot allows one to guage its quality. The remaining three plots show how many tests are significant, as well as how many false positives to expect for each q-value cut-off. A thorough discussion of these plots can be found in Storey & Tibshirani (2003).
此功能使四肢图。第一个是pi_0随其调整参数lambda估计图。在大多数情况下,lambda越大,估计的偏差降低,但方差增大。存在的各种方法,为平衡这种偏见方差贸易关(层高2002年,层与Tibshirani 2003年,层高,2004年泰勒和西格蒙德)。比较pi_0这个图的估计允许一个有瓜葛的质量。其余三幅图,显示多少测试显着,以及为每个Q值切断期望多少误报。一个深入讨论这些图,可以发现在层与Tibshirani(2003年)。
值----------Value----------
Nothing of interest.
没有利息。
作者(S)----------Author(s)----------
John D. Storey <a href="mailto:jstorey@u.washington.edu">jstorey@u.washington.edu</a>
参考文献----------References----------
of the Royal Statistical Society, Series B, 64: 479-498.
genome-wide experiments. Proceedings of the National Academy of Sciences, 100: 9440-9445.
interpretation and the q-value. Annals of Statistics, 31: 2013-2035.
conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the Royal Statistical Society, Series B, 66: 187-205.
参见----------See Also----------
qvalue, qwrite, qsummary, qvalue.gui
qvalue,qwrite,qsummary,qvalue.gui
举例----------Examples----------
## Not run: [#无法运行:]
p <- scan(pvalues.txt)
qobj <- qvalue(p)
qplot(qobj)
qwrite(qobj, filename=myresults.txt)
# view plots for q-values between 0 and 0.3:[Q-值介于0和0.3查看图:]
plot(qobj, rng=c(0.0, 0.3))
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|