找回密码
 注册
查看: 926|回复: 0

R语言 PICS包 picsList-class()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 11:07:43 | 显示全部楼层 |阅读模式
picsList-class(PICS)
picsList-class()所属R语言包:PICS

                                        The pics class
                                         太平洋岛国类

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This object is used to gather all parameters from fitting PICS to multiple candidate regions (as returned by the "segmentReads" function).  The objet contains the following slots: "List", "paraPrior", "paraEM", "minReads", "N", "Nc". "List" is a list of "pics" or "picsError" objects. "paraPrior" is a list containing the hyperparameters used for the prior, "paraEM" is a list of convergence parameters for the EM, "minReads" is a list containing the minimum number of reads used to fit a region with "PICS", "N" is the total number of reads in the ChIP samples while "Nc" is the total number of reads in the control sample.
这个对象是用来收集所有参数拟合的PICS多个候选区域(如由“segmentReads”功能返回)。客体包含以下插槽:“名单”,“paraPrior,paraEM,minReads”,“N”,“NC”。 名单是图片或picsError“对象名单。 “paraPrior是一个列表,其中包含之前所使用的hyperparameters,paraEM”是为EM的收敛参数列表“,minReads”是一个列表,其中包含用于读取的最小数量,以适应区域“的PICS,N是NC是在读取控制样品总数的芯片样品中读取,而总人数。


参数----------Arguments----------

参数:object
An object of class pics.        
对象类pics。


存取----------Accessors----------

The PICS package provide accessors to directly access to most of the parameters/standard errors and chromosomes.  In the code snippets below, "x" is a "picsList" object. For all accessors, the "picsError" objects are omitted, so that the accessors only return values for the "pics" objects (i.e. all valid binding events).
太平洋岛国包提供访问器直接访问参数/标准错误和染色体。在下面的代码片段,X是一个picsList对象。对于所有存取,picsError的对象都被省略,因此,存取只返回“图片”对象的值(即所有有效的约束力的事件)。




'chromosome(x)' Gets the chromosome names of all candidate regions.
“染色体(X)获取所有候选区域的染色体名。




'mu(x)' Gets the position estimates of all binding sites identified in all candidate regions.
“万亩(X)获取所有候选区域中确定的所有结合位点的位置估计。




'delta(x)' Gets the average fragment lengths of all binding sites identified in all candidate regions.
“Delta(X)获取所有候选区域中确定的所有结合位点的平均片段长度。




'sigmaSqF(x)' Gets the F peak variances of all binding sites identified in all candidate regions.
“sigmaSqF(X)获取所有候选区域中确定的所有结合位点的F峰差异。




'sigmaSqR(x)' Gets the R peak variances of all binding sites identified in all candidate regions.
“sigmaSqR(X)获取所有候选区域中确定的所有结合位点的R峰的差异。




'seF(x)' Gets the standard errors of all binding site position estimates identified in all candidate regions.
“两会(X)获取所有结合位点的位置的标准误差估计,在所有候选区域确定。




'seF(x)' Gets the standard errors of all F peak modes identified in all candidate regions.
“两会(X)获取所有F峰模式,确定在所有候选区域的标准误差。




'seR(x)' Gets the standard errors of all R peak modes identified in all candidate regions.
“SER(X)获取所有的R峰模式,确定在所有候选区域的标准误差。




'score(x)' Gets the scores of all binding events identified in all candidate regions.
“得分(X)获取所有候选区域中确定的所有绑定事件的分数。


构造----------Constructor----------

newPicsList(List, paraEM, paraPrior, minReads, N, Nc)
newPicsList(名单paraEM,paraPrior,minReads,N,NC)




List The mixture weights (a vector)
列出的混合物重量(向量)




paraEM The binding site positions (a vector)
paraEM结合位点的位置(向量)




paraPrior The DNA fragment lengths (a vector)
paraPrior DNA片段长度(向量)




N The variance parameters for the forward distribution (vector)
列印正向分布的方差参数(向量)




Nc The variance parameters for the forward distribution (vector)
数控向前分布(矢量)的方差参数


方法----------Methods----------




[ signature(x = ``pics''): subset PICS object.
[signature(x = pics''):子集的PICS对象。


方法----------Methods----------




length signature(x = ``pics''): subset PICS object.
长度signature(x = pics''):子集的PICS对象。


构造----------Constructor----------

newPicsList<-function(List, paraEM, paraPrior, minReads, N, Nc) constructs a new "picsList" object with the following arguments.
newPicsList <功能(列表,paraEM,paraPrior,minReads,氮,NC)构造一个新的“picsList”具有以下参数的对象。




w The mixture weights (a vector)
W的混合物重量(向量)




mu The binding site positions (a vector)
亩结合位点的位置(向量)




delta The DNA fragment lengths (a vector)
Delta的DNA片段长度(向量)




sigmaSqF The variance parameters for the forward distribution (vector)
sigmaSqF向前分布的方差(矢量)参数




sigmaSqR The variance parameters for the reverse distribution (vector)
sigmaSqR为逆向分布的方差参数(向量)




seMu The standard errors for mu (vector)
SEMU亩的标准误差(矢量)




seMuF The standard errors for muF (vector)
seMuF MUF的标准误差(矢量)




seMuR The standard errors for muR (vector)
seMuR穆尔的标准误差(矢量)




seMuR The standard errors for muR (vector)
seMuR穆尔的标准误差(矢量)




score The scores for each binding event (vector)
得分的分数为每个绑定事件(矢量)




Nmerged The number of peaks that were merged (integer)
Nmerged合并峰(整数)




converge A logical value, TRUE, if the EM as converged
收敛一个逻辑值TRUE,如果作为融合的EM




infMat The information matrix
infMat的信息矩阵




chr The chromosome for the region
CHR在该区域的染色体


作者(S)----------Author(s)----------


Xuekui Zhang, Arnaud Droit &lt;<a href="mailto:arnaud.droit@crchuq.ualaval.ca">arnaud.droit@crchuq.ualaval.ca</a>&gt; and Raphael Gottardo &lt;<a href="mailto:rgottard@fhcrc.org">rgottard@fhcrc.org</a>&gt;



参考文献----------References----------



参见----------See Also----------

pics
pics


举例----------Examples----------


# Here is an example of how to construct such a region[下面是如何构建这样一个区域的一个例子]
# Typically, you would not do this manually, you would use the pics function to return a 'picsList' that contains a list of 'pics' or 'picsError' object.[通常情况下,你会不会做手工,你会使用图片功能返回一个picsList包含图片或picsError对象名单。]
w<-1
mu<-10000
delta<-150
sigmaSqF<-5000
sigmaSqR<-5000
seMu<-10
seMuF<-10
seMuR<-10
score<-5
Nmerged<-0
converge<-TRUE
infMat<-matrix(0)
chr<-"chr1"
range<-c(1000,2000)
# Contructor[构造器]
#myPICS1&lt;-newPics(w,mu,delta,sigmaSqF,sigmaSqR,seMu,seMuF,seMuR,score,Nmerged,converge,infMat,as.integer(range),chr)[]
#myPICS2&lt;-newPics(w,mu+1000,delta,sigmaSqF,sigmaSqR,seMu,seMuF,seMuR,score,Nmerged,converge,infMat,as.integer(range),chr)[]

#minReads&lt;-list(perPeak=2,perRegion=5)[minReads <名单(perPeak = 2,perRegion = 5)]
#paraPrior&lt;-list(xi=200,rho=1,alpha=20,beta=40000)[paraPrior <名单(XI = 200,ρ= 1,α= 20,β= 40000)]
#paraEM&lt;-list(minK=1,maxK=15,tol=10e-6,B=100)[paraEM <列表(水貂= 1,maxK = 15,TOL = 10E-6 B = 100)]
#N&lt;-100[N <-100]
#Nc&lt;-200[NC <-200]

#mynewPicsList&lt;-newPicsList(list(myPICS1,myPICS2), paraEM, paraPrior, minReads, as.integer(100), as.integer(200))[mynewPicsList <newPicsList(的列表(myPICS1,myPICS2),paraEM,paraPrior,minReads,as.integer(100),as.integer(200))]
# Accessors[存取]
# Get the standard error of Mu[获取亩的标准错误]
#se(mynewPicsList)[SE(mynewPicsList)]
# Get the standard error of MuF[得到MUF标准错误]
#seF(mynewPicsList)[SEF(mynewPicsList)]
# Get the scores[取得的成绩]
#score(mynewPicsList)[得分(mynewPicsList)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-1 11:52 , Processed in 0.020513 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表