Simulation.pickgene(pickgene)
Simulation.pickgene()所属R语言包:pickgene
Yi Lin's simulations for microarray analysis
易林的模拟芯片分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Example simulations
例如模拟
参见----------See Also----------
<CITE>multipickgene</CITE>
<CITE> multipickgene </引用>
举例----------Examples----------
### Note: This uses old pickgene[##注:此使用旧pickgene的]
#detail of the model (7-8). (first run does not include meas error \eta_i)[该模型的细节(7-8)。 (不包括第一次运行测量误差\ eta_i)]
#par(mfrow=c(3,3))[面值(mfrow = C(3,3))]
t<-rnorm(10000,4,2)
changes1<-rep(0,10000)
changes1[1:500]<-rnorm(500)
t1<-t+changes1
changes2<-rep(0,10000)
changes2[1:500]<-rnorm(500)
t2<-t+changes2
s<-rnorm(10000,0,0.1)
cx<-3
cy<-2
t1<-t1+rnorm(10000,0,0.1)
t2<-t2+rnorm(10000,0,0.1)
x<-cx*exp(t1)
y<-cy*exp(t2)
#x<-cx*exp(t1)+rnorm(10000,0,50)[X <-CX * EXP(T1)+ rnorm(10000,0,50)]
#y<-cy*exp(t2)+rnorm(10000,0,40)[Ÿ<-CY * EXP(T2)+ rnorm(10000,0,40)]
xx<-qnorm(rank(x)/(10000+1))
yy<-qnorm(rank(y)/(10000+1))
#hist(x,breaks=100)[历史(X,打破= 100)]
#hist(y,breaks=100)[历史(Y,打破= 100)]
#plot(x,y)[图(X,Y)]
#hist(y[x<=0],breaks=20)[历史(Y [X <= 0],截断= 20)]
#hist(x[y<=0],breaks=20)[历史(X [Y <= 0],截断= 20)]
#plot(xx,yy)[图(XX,YY)]
topgenepick<-multipickgene( cbind(xx,yy),condi=0:1,geneID=1:10000, d=1,
npickgene=500)$pick[[1]]$probe
abchangesrank<-rank((-1)*abs(t1-t2))
count <- rep(NA,500)
for( i in 1:500 ) {
topipick <- topgenepick[1:i]
count[i] <- sum( abchangesrank[topipick] <= i )
}
## Figure 2[#图2]
plot( 1:500, 1:500, type="n",
xlab="Rank of 500 most changed genes by our procedure",
ylab="Number similarly ranked by the 'optimal' procedure",
xaxs="i", yaxs="i" )
lines( 1:500, count, type="s", lty=1, lwd=2 )
abline(0,1)
## Not run: dev.print( hor=F, height=6.5, width=6.5, file="rank1.ps" )[#无法运行:dev.print(HOR = F高度= 6.5,宽= 6.5,文件=“rank1.ps”)]
#again, but with the additive noise. (includes \eta_i)[再次,但与加性噪声。 (\ eta_i)]
par(mfrow=c(2,2))
t<-rnorm(10000,4,2)
changes1<-rep(0,10000)
changes1[1:500]<-rnorm(500)
t1<-t+changes1
changes2<-rep(0,10000)
changes2[1:500]<-rnorm(500)
t2<-t+changes2
s<-rnorm(10000,0,0.1)
cx<-3
cy<-2
t1<-t1+rnorm(10000,0,0.1)
t2<-t2+rnorm(10000,0,0.1)
### note that noise is very large here (50,40)[#注意,噪音是非常大的(50,40)]
x<-cx*exp(t1)+rnorm(10000,0,50)
y<-cy*exp(t2)+rnorm(10000,0,40)
xx<-qnorm(rank(x)/(10000+1))
yy<-qnorm(rank(y)/(10000+1))
hist(x,breaks=100)
hist(y,breaks=100)
plot(x,y,cex=0.4)
#hist(y[x<=0],breaks=20)[历史(Y [X <= 0],截断= 20)]
#hist(x[y<=0],breaks=20)[历史(X [Y <= 0],截断= 20)]
plot(xx,yy,cex=0.4)
## Not run: dev.print( hor=F, height=6.5, width=6.5, file="simudata.ps" )[#无法运行:dev.print(HOR = F高度= 6.5,宽= 6.5,文件=“simudata.ps”)]
topgenepick<-multipickgene(cbind(xx,yy),condi=0:1,geneID=1:10000, d=1,
npickgene=500)$pick[[1]]$probe
abchangesrank<-rank((-1)*abs(t1-t2))
count <- rep(NA,500)
for( i in 1:500 ) {
topipick <- topgenepick[1:i]
count[i] <- sum( abchangesrank[topipick] <= i )
}
par(mfrow=c(1,1)) # figure 4[图4]
plot( 1:500, 1:500, type="n",
xlab="Rank of 500 most changed genes by our procedure",
ylab="Number similarly ranked by the 'optimal' procedure",
xaxs="i", yaxs="i" )
lines( 1:500, count, type="s", lty=1, lwd=2 )
abline(0,1)
## Not run: dev.print( hor=F, height=6.5, width=6.5, file="rank2.ps" )[#无法运行:dev.print(HOR = F高度= 6.5,宽= 6.5,文件=“rank2.ps”)]
### Figure 5[##图5]
genepick <- multipickgene( cbind(xx,yy), condi=0:1, geneID=1:10000, d=1)
## Not run: dev.print( hor=F, height=6.5, width=6.5, file="simutest.ps" )$pick[[1]]$probe[#不运行:dev.print(贺楼高度= 6.5,宽= 6.5,文件=“simutest.ps”)选择[1] $探针]
npick<-length(genepick$pickedgene)
genepick$pickedgene
npick
count[npick]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|