ClusterPhenoTest(phenoTest)
ClusterPhenoTest()所属R语言包:phenoTest
Test association of clusters with phenotype.
测试协会与表型的聚类。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Test the associations between clusters that each sample belongs to (based on gene expression) and each phenotype.
测试每个样品属于(基于基因表达)和各型簇之间的关联。
用法----------Usage----------
ClusterPhenoTest(x,cluster,vars2test,B=10^4,p.adjust.method='none')
参数----------Arguments----------
参数:x
ExpressionSet with phenotype information stored in pData(x).
ExpressionSet储存在pData(x)型的信息。
参数:cluster
variable of class character or factor telling at which cluster each sample belongs to.
类character或factor告诉每个样品属于哪一个聚类的变量。
参数:vars2test
list with components 'continuous', 'categorical', 'ordinal' and 'survival' indicating which phenotype variables should be tested. 'continuous', 'categorical' and 'ordinal' must be character vectors, 'survival' a matrix with columns named 'time' and 'event'. The names must match names in names(pData(x)).
组件的持续“,”分类“,”序“和”生存“型变量应测试的名单。 “连续”,“类别”和“序”必须是特征向量,“生存”,一个名为“时间”和“事件”的列矩阵。该名称必须匹配名names(pData(x))。
参数:B
An integer specifying the number of replicates used in the chi-square Monte Carlo test (passed on to chisq.test).
一个整数,指定复制的数量,使用卡方的蒙特卡洛试验(chisq.test的传递)。
参数:p.adjust.method
Method for P-value adjustment, passed on to p.adjust.
P值调整方法,通过p.adjust。
Details
详情----------Details----------
Test association between the provided clusters and each phenotype.
测试所提供的聚类和各型之间的关联。
For variables in vars2test\$continuous and vars2test\$ordinal a Kruskal-Wallis Rank Sum test is used; for vars2test\$categorical a chi-square test (with exact p-value if simulate.p.value is set to TRUE); for var2test\$survival a Cox proportional hazards likelihood-ratio test.
在vars2test变量\ $连续vars2test \ $序1克鲁斯卡尔-Wallis秩和检验; vars2test \ $类别卡方检验(精确p值如果simulate.p.value设置为TRUE); var2test \ $生存Cox比例风险似然比检验。
作者(S)----------Author(s)----------
David Rossell
举例----------Examples----------
#load data[数据加载]
data(eset)
eset
#construct vars2test[构建vars2test]
survival <- matrix(c("Relapse","Months2Relapse"),ncol=2,byrow=TRUE)
colnames(survival) <- c('event','time')
#add positive to have more than one category[积极加入到有多个类别]
pData(eset)[1:20,'lymph.node.status'] <- 'positive'
vars2test <- list(survival=survival,categorical='lymph.node.status')
vars2test
#first half of the samples will be one cluster and the rest the other cluster[样品上半年将是一个聚类和其他聚类截断]
cluster <- c(rep('Cluster1',floor(ncol(eset)/2)),rep('Cluster2',ncol(eset)-floor(ncol(eset)/2)))
#test association[检验协会]
ClusterPhenoTest(eset,cluster,vars2test=vars2test)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|