sig.mask(OLIN)
sig.mask()所属R语言包:OLIN
Masking of data based on significance testing
屏蔽数据的基础上显着性检验
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function sets data to NA if the corresponding spots have significantly biased
此功能设置数据为NA如果相应的斑点已经明显偏向
用法----------Usage----------
sig.mask(object,Sp,Sn,thrp,thrn)
参数----------Arguments----------
参数:object
object of class marrayRaw or marrrayNorm
对象的类marrayRaw或marrrayNorm
参数:Sp
list of vectors of false discovery rate or p-values for positive deviation of median/mean of \code{M} as produced by fdr.int2, p.int2, fdr.spatial2 or p.spatial2.
虚假的发现率或为正偏差median/mean of \code{M}fdr.int2, p.int2, fdr.spatial2或p.spatial2生产的p-值的向量列表。
参数:Sn
list vector of false discovery rate or p-values for negative deviation of median/mean of \code{M} as produced by fdr.int2, p.int2, fdr.spatial2 or p.spatial2.
虚假的发现率或为负偏差median/mean of \code{M}fdr.int2, p.int2, fdr.spatial2或p.spatial2生产的P-值的列表向量。
参数:thrp
vector of thresholds for significance of positive deviation (Sp)
正偏差意义的阈值向量(Sp)
参数:thrn
vector of thresholds for significance of negative deviation (Sn)
矢量阈值的负偏差的意义(Sn)
Details
详情----------Details----------
This function can be used for the masking of data that has been decided to be unrelaible after the application of significance test for intenstiy- and location dependent dye bias (e.g. p.int2, fdr.int2,
此功能可用于已决定后的显着性检验应用的intenstiy和位置取决于染料偏见unrelaible数据屏蔽(例如<code> p.int2,fdr.int2
作者(S)----------Author(s)----------
Matthias E. Futschik (<a href="http://itb.biologie.hu-berlin.de/~futschik">http://itb.biologie.hu-berlin.de/~futschik</a>)
参见----------See Also----------
sigint.plot, fdr.int, p.int, sigxy.plot,
sigint.plot,fdr.int,p.int,sigxy.plot
举例----------Examples----------
# To run these commands, delete comment sign (#) ![要运行这些命令,删除注释符号(#)!]
#[]
# LOADING DATA[加载数据]
# data(sw)[数据(SW)]
# []
# MASKING REGIONS WITH SPATIAL DYE BIAS[美纹纸空间染料偏见区域]
# []
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS[作者:现货,邻里意义的计算]
# For this example, N was chosen rather small. For "real" analysis, it should be larger.[对于这个例子,N的选择相当小。 “真实”的分析,它应该更大。]
# FDR <- fdr.spatial2(sw,delta=2,N=10,av="median",edgeNA=FALSE)[FDR< - fdr.spatial2(SW,δ= 2,N = 10,,AV =“中位数”,edgeNA = FALSE时)]
#[]
# VISUALISATION[可视化]
# sigxy.plot2(sw[,1],FDR$FDRp[[1]],FDR$FDRn[[1]],color.lim=c(-5,5),main="FDR")[sigxy.plot2(SW [1],FDR$ FDRp [1],FDRFDRn [1],color.lim = C(-5,5),主要=“FDR”)]
# []
# MASKING SIGNIFICANT NEIGHBOURHOODS[屏蔽主要邻里]
# thresp <- c(0.01,0.01,0.01,0.01)[thresp < - C(0.01,0.01,0.01,0.01)]
# thresn <- c(0.01,0.01,0.01,0.01)[thresn < - C(0.01,0.01,0.01,0.01)]
# sw.masked <- sig.mask(sw,Sp=FDR$FDRp,Sn=FDR$FDRn,thrp=thresp,thrn=thresn)[< - sig.mask sw.masked(thrn = thresn thrp = thresp,SW,SP = FDR $ FDRp,SN =FDR美元FDRn)]
# mxy.plot(sw.masked[,4]) # plot masked data for array 4[mxy.plot(sw.masked [4])#图掩盖的数据阵列4]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|