p.spatial2(OLIN)
p.spatial2()所属R语言包:OLIN
Assessment of the significance of spatial bias based on p-values
空间偏见的重要性评估的基础上p值
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function assesses the significance of spatial bias. This is achieved by comparing the observed average values of logged fold-changes within a spot's spatial neighbourhood with an empirical distribution generated by permutation tests. The significance is given
此功能评估空间偏见的意义。这是通过比较记录fold change的观测平均值与排列测试所产生的经验分布在一个点的空间邻里。意义
用法----------Usage----------
p.spatial2(object,delta=2,N=-1,av="median",p.adjust.method="none")
参数----------Arguments----------
参数:object
object of class marrayRaw or marrayNorm
对象类marrayRaw或marrayNorm
参数:delta
integer determining the size of spot neighbourhoods ((2*delta+1)x(2*delta+1)).
整数确定现货街区的大小((2*delta+1)x(2*delta+1))。
参数:N
number of samples for generation of empirical background distribution
样本数为一代的经验背景分布
参数:av
averaging of M within neighbourhood by mean or median (default)
平均M内邻里均值或中位数(默认)
参数:p.adjust.method
method for adjusting p-values due to multiple testing regime. The available methods are “none”, “bonferroni”, “holm”, “hochberg”, “hommel” and “fdr”. See also p.adjust. </table>
由于多次的测试制度,调整p值的方法。可用的方法是“无”,“邦弗朗尼”,“冬青”,“hochberg”,“HOMMEL”和“FDR”。还可以看p.adjust。 </ TABLE>
Details
详情----------Details----------
The function p.spatial2.Rd is basically the same as p.spatial, but differs in its input and output formats. Details about the functionality can be found at p.spatial.
功能p.spatial2.Rd基本上相同p.spatial,但在其输入和输出格式不同。关于功能的详细资料,可以发现在p.spatial。
值----------Value----------
A list of a two lists of vectors is produced containing the p-values for positive (Pp) and negative (Pn) deviations of
两向量列表列表包含P-值(Pp)为积极和消极的(Pn)偏差产生
注意----------Note----------
This function will be fused with p.spatial in future versions using S4-style methods.
此功能将融合p.spatial在未来的版本中使用S4风格的方法。
作者(S)----------Author(s)----------
Matthias E. Futschik (<a href="http://itb.biologie.hu-berlin.de/~futschik">http://itb.biologie.hu-berlin.de/~futschik</a>)
参见----------See Also----------
fdr.int, sigxy.plot, p.adjust,p.spatial
fdr.int,sigxy.plot,p.adjust,p.spatial
举例----------Examples----------
# To run these examples, "un-comment" them![要运行这些例子,“联合国发表评论”他们!]
#[]
# LOADING DATA[加载数据]
# data(sw)[数据(SW)]
# []
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS[作者:现货,邻里意义的计算]
# For this illustration, N was chosen rather small. For "real" analysis, it should be larger.[对于这个例子,N的选择相当小。 “真实”的分析,它应该更大。]
# P <- p.spatial2(sw,delta=2,N=10000,av="median")[,P < - p.spatial2(SW,δ= 2 N = 10000,AV =“中位数”)]
# SIGNIFICANCE PLOTS OF ARRAY 1[阵列的意义图]
# sigxy.plot2(sw[,1],P$Pp[[1]],P$Pn[[1]],color.lim=c(-5,5),main="P-value")[sigxy.plot2(SW [1],磷$ PP [1],磷$ PN [1],color.lim = C(-5,5),主要=“P值”)]
# SIGNIFICANCE PLOTS OF ARRAY 3[3阵列的意义图]
# sigxy.plot2(sw[,3],P$Pp[[3]],P$Pn[[3]],color.lim=c(-5,5),main="P-value")[sigxy.plot2(SW [3],磷$ PP [3],磷$ PN [3],color.lim = C(-5,5),主要=“P值”)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|