找回密码
 注册
查看: 691|回复: 0

R语言 MmPalateMiRNA包 imputeKNN()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 01:06:45 | 显示全部楼层 |阅读模式
imputeKNN(MmPalateMiRNA)
imputeKNN()所属R语言包:MmPalateMiRNA

                                         Impute missing values
                                         填补缺失值

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Imputes missing values in a data matrix using the K-nearest neighbor algorithm.   
责难数据矩阵缺失值用K近邻算法。


用法----------Usage----------


imputeKNN(data, k = 10, distance = "euclidean", rm.na = TRUE, rm.nan =
TRUE, rm.inf = TRUE )



参数----------Arguments----------

参数:data
a data matrix  
数据矩阵


参数:k
number of neighbors to use  
邻居使用的数


参数:distance
distance metric to use, one of "euclidean" or "correlation"  
使用距离度量,“欧几里德”或“关联”


参数:rm.na
should NA values be imputed?  
应归咎于北美值吗?


参数:rm.nan
should NaN values be imputed?  
应归咎于NaN值吗?


参数:rm.inf
should Inf values be imputed?  
应归咎于INF值?


Details

详情----------Details----------

Uses the K-nearest neighbor algorithm, as described in Troyanskaya et al., 2001, to impute missing values in a data matrix.  Elements are imputed row-wise, so that neighbors are selected based on the rows which are closest in distance to the row with missing values.  There are two choices for a distance metric, either Euclidean (the default) or a correlation 'metric'.  If the latter is selected, matrix values are first row-normalized to mean zero and standard deviation one to select neighbors.  Values are 'un'-normalized by applying the inverse transformation prior to returning the imputed data matrix.
使用K近邻算法,在Troyanskaya等所述,2001年,意指在一个数据矩阵缺失值。元素都归咎于行明智的,所以在遗漏值的行的距离最接近的行的基础上,选择邻居。有两种选择一个距离度量,无论是欧几里德(默认)或相关的度量“。如果选择后者,矩阵值是第一行标准化意味着为零,标准偏差,选择邻居。值是un标准化之前返回矩阵估算数据通过逆变换。


值----------Value----------

A data matrix with missing values imputed.
一个矩阵数据丢失归咎于值。


作者(S)----------Author(s)----------



Guy Brock




参考文献----------References----------

R. Tibshirani, D. Botstein, and R. B. Altman. Missing value estimation methods for dna microarrays. Bioinformatics, 17(6):520-5, 2001.
Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinformatics, 9:12, 2008.

参见----------See Also----------

See the package vignette for illustration on usage.
见插图包在使用上的小插曲。


举例----------Examples----------



## generate some fake data and impute MVs[#产生一些假数据和推诿MV的]
set.seed(101)
mat <- matrix(rnorm(500), nrow=100, ncol=5)
idx.mv <- sample(1:length(mat), 50, replace=FALSE)
mat[idx.mv] <- NA
imputed <- imputeKNN(mat)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-3 07:00 , Processed in 0.027779 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表