predict(MEDME)
predict()所属R语言包:MEDME
Applying the logistic model on MeDIP enrichment data
MeDIP富集数据应用Logistic模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This allows the probe-level determination of MeDIP smoothed data, as well as absolute and relative methylation levels (AMS and RMS respectively)
这使得MeDIP平滑数据的探针水平的决心,以及绝对和相对的甲基化水平(分别为AMS和RMS)
用法----------Usage----------
predict(data, MEDMEfit, MEDMEextremes = c(1,32), wsize = 1000, wFunction='linear')
参数----------Arguments----------
参数:data
An object of class MEDMEset
一个类MEDMEset对象
参数:MEDMEfit
the model obtained from the MEDME.model function
获得从MEDME.model功能模型
参数:MEDMEextremes
vector; the background and saturation values as determined by the fitting of the model on the calibration data
向量的背景和校准数据模型拟合确定的饱和值
参数:wsize
number; the size of the smoothing window, in bp
数;平滑窗口的大小,在BP
参数:wFunction
string; the type of weighting function, to choose among linear, exp, log or none
字符串;加权函数的类型,选择其中线性,EXP,LOG或无
值----------Value----------
An object of class MEDMEset. The resulting smoothed data, the absolute and relative methylation score (AMS and RMS) are saved in the smoothed, AMS and RMS slots, respectively.
对象类MEDMEset。产生平滑的数据保存在平滑的,绝对和相对的甲基化评分(AMS和RMS),AMS和RMS插槽,分别。
参考文献----------References----------
<h3>See Also</h3> <code>smooth</code>, <code>CGcount</code>, <code>MEDME</code>
举例----------Examples----------
data(testMEDMEset)
## just an example with the first 1000 probes[#只是一个例子,与1000探针]
testMEDMEset = smooth(data = testMEDMEset[1:1000, ])
library(BSgenome.Hsapiens.UCSC.hg18)
testMEDMEset = CGcount(data = testMEDMEset)
MEDMEmodel = MEDME(data = testMEDMEset, sample = 1, CGcountThr = 1, figName = NULL)
testMEDMEset = predict(data = testMEDMEset, MEDMEfit = MEDMEmodel, MEDMEextremes = c(1,32), wsize = 1000, wFunction='linear')
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|