找回密码
 注册
查看: 610|回复: 0

R语言 MEDME包 MEDME()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 00:39:24 | 显示全部楼层 |阅读模式
MEDME(MEDME)
MEDME()所属R语言包:MEDME

                                         Determining the logistic model of MeDIP enrichment in respect to the expected DNA methylation level
                                         在确定预期的DNA甲基化水平Logistic模型MeDIP富集

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Probe-level MeDIP weighted enrichment is compared to the expected DNA methytlation level. The former is determined applying MeDIP protocol to a fully methylated DNA. The latter is determined as the count of CpGs for each probe. This is assumed to be the methylation level of each probe in a fully methylated sample.
探针级MeDIP加权富集比预期的DNA methytlation水平。前者是确定申请MeDIP协议完全甲基化的DNA。后者则是确定的CPGs为每个探针的计数。这被认为是在一个完全甲基化的样本每个探针的甲基化水平。


用法----------Usage----------


MEDME(data, sample, CGcountThr = 1, figName = NULL)



参数----------Arguments----------

参数:data
An object of class MEDMEset
一个类MEDMEset对象


参数:sample
Integer; the number of the sample to be used to fit the model, based on the order of samples in the smoothed slot
整数;被用来拟合模型的样本数量的基础上样本平滑槽的顺序


参数:CGcountThr
number; the threshold to avoid modelling probes with really low methylation level, i.e. CpG count  
数的阈值,以避免与真正的低甲基化水平,即中央人民政府计数建模探针


参数:figName
string; the name of the file reporting the model fitting  
字符串文件名报告模型拟合


Details

详情----------Details----------

The model should be applied on calibration data containing MeDIP enrichment of fully methylated DNA, most likely artificially generated (see references). Nevertheless, in case chromosome or genome-wide human tiling arrays are used a regular sample could be used too. In fact, human genomic DNA is known to be hyper-methylated but in the promoter regions. Of course the performance of the method is expected to be somehow affected by this approximation.
该模型应适用于含有MeDIP富集的DNA甲基化,最有可能产生的人为(见参考资料)的校准数据。不过,在情况下染色体或人类全基因组平铺阵列用于定期样本可以使用。事实上,在人类基因组DNA被称为是超甲基化,但在启动子区域。当然,该方法的性能预计可不知何故,此近似的影响。


值----------Value----------

The logistic model as returned from the multdrc function from the drc R library
从刚果(金)R库multdrc函数返回从Logistic模型


参考文献----------References----------

<h3>See Also</h3>   <code>smooth</code>, <code>CGcount</code>

举例----------Examples----------


data(testMEDMEset)
## just an example with the first 1000 probes[#只是一个例子,与1000探针]
testMEDMEset = smooth(data = testMEDMEset[1:1000, ])
library(BSgenome.Hsapiens.UCSC.hg18)
testMEDMEset = CGcount(data = testMEDMEset)
MEDMEmodel = MEDME(data = testMEDMEset, sample = 1, CGcountThr = 1, figName = NULL)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-3 18:48 , Processed in 0.023990 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表