找回密码
 注册
查看: 509|回复: 0

R语言 maSigPro包 two.ways.stepback()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 00:25:35 | 显示全部楼层 |阅读模式
two.ways.stepback(maSigPro)
two.ways.stepback()所属R语言包:maSigPro

                                         Fitting a linear model by backward-stepwise regression
                                         向后逐步回归拟合线性模型

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

two.ways.stepback fits a linear regression model applying backward-stepwise strategy.
two.ways.stepback适合线性回归模型,采用向后逐步战略。


用法----------Usage----------


two.ways.stepback(y = y, d = d, alfa = 0.05)



参数----------Arguments----------

参数:y
dependent variable  
因变量


参数:d
data frame containing by columns the set of variables that could be in the selected model  
帧数据列包含的变量,可能是在选定的模型集


参数:alfa
significance level to decide if a variable stays or not in the model
显着性水平,以决定是否变量住宿或模型


Details

详情----------Details----------

The strategy begins analysing a model with all the variables included in d. If all the variables are statistically  significant (all the variables have a p-value less than alfa)  this model will be the result. If not, the less  statistically significant variable will be removed and the model is re-calculated. The process is repeated up to  find a model with all the variables statistically significant (p-value < alpha). Each time that a variable is removed from the model, it is considered the possibility of one or more removed  variables to come in again.      
战略分析模型的所有变量包含在d开始。如果所有的变量统计学意义(所有的变量比阿尔法p值),这种模式将成为结果。如果没有,少统计学意义的变量将被删除,并重新计算模型。重复这个过程找到的所有变量统计学意义(p值<α)模型。每一个变量从模型中删除的时候,它被认为是删除一个或多个变量来再次的可能性。


值----------Value----------

two.ways.stepback returns an object of the class lm, where the model uses  y as dependent variable and all the selected variables from d as independent variables.
two.ways.stepback返回一个类的对象lm,模型使用y作为因变量和d作为独立变量选定的所有变量。

The function summary are used to obtain a summary and analysis of variance table of the results.  The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by lm.
函数summary用于获取了总结和方差分析结果表。通用存取功能coefficients,effects,fitted.values和residuals由lm返回的值中提取各种有用的功能。


作者(S)----------Author(s)----------


Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es



参考文献----------References----------

maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

参见----------See Also----------

lm, step, stepfor, stepback, two.ways.stepfor
lm,step,stepfor,stepback,two.ways.stepfor


举例----------Examples----------



## create design matrix[#创建一个设计矩阵]
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)


## expression vector[#表达向量]
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- two.ways.stepback(y = y, d = dis)
summary(s.fit)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-4 00:54 , Processed in 0.019937 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表