ClusterGeneList(MantelCorr)
ClusterGeneList()所属R语言包:MantelCorr
Generate Genes from a Cluster List
从聚类名单产生基因
译者:生物统计家园网 机器人LoveR
描述----------Description----------
'ClusterGeneList' produces a list of both significant and nonsignificant genes from each respective cluster type
“ClusterGeneList”,产生了显着和不显着的基因,从各自的聚类类型列表
用法----------Usage----------
ClusterGeneList(clus, clustlist.sig, x.data)
参数----------Arguments----------
参数: clus
'clusters' object returned by 'GetClusters'
聚类的对象返回GetClusters“
参数: clustlist.sig
'SignificantClusters' object returned by 'ClusterList'
“SignificantClusters对象返回”ClusterList
参数: x.data
original (p x n) numeric data matrix (e.g., gene-expression data)
原(PXN)数字矩阵数据(例如,基因表达数据)
值----------Value----------
A list with components:
与组件列表:
参数: SignificantClusterGenes
significant cluster genes returned from 'ClusterList'
显着的聚类基因从“ClusterList返回”
参数: NonSignificantClusterGenes
nonsignificant cluster genes returned from 'ClusterList'
不显着的聚类基因从“ClusterList返回
注意----------Note----------
argument 'x.data' should have an ID gene variable, 'probes', attached as a 'dimnames'
参数x.data“应该有一个ID的基因变量,”探针“,附作为”dimnames“
作者(S)----------Author(s)----------
Brian Steinmeyer
参见----------See Also----------
'GetClusters' 'ClusterList'
“GetClustersClusterList”
举例----------Examples----------
# simulate a p x n microarray expression dataset, where p = genes and n = samples[apxn模拟芯片表达数据集,其中p =基因和N =样本]
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples[数据有p = 1,050基因和N = 40个样本]
clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)
# generate both significant and non-significant gene clusters[产生重大和非重大的基因簇]
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corrs)
# significant and non-significant cluster genes (expression values)[重大和非重大的簇基因(表达值)]
cluster.genes <- ClusterGeneList(clusters.result$clusters, cluster.list$SignificantClusters, data)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|