fdr.adjust(LPE)
fdr.adjust()所属R语言包:LPE
FDR adjustment procedures
FDR校正程序
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Based on the type of adjustment, eg: resampling, BH, BY, etc, calls appropriate functions for fdr adjustment
基于类型的调整,例如:重采样,BH,BY等,要求FDR校正相应的功能
用法----------Usage----------
fdr.adjust(lpe.result,adjp="resamp",target.fdr=c(10^-3 ,seq(0.01,0.10,0.01), 0.15, 0.20, 0.50),iterations=5,ALL=FALSE )
参数----------Arguments----------
参数:lpe.result
Data frame obtained from calling lpe function
数据框从调用LPE功能
参数:adjp
Type of adjustment procedure. Can be "resamp", "BH", "BY", "Bonferroni" or "mix.all"
调整程序的类型。可以“resamp”,“波黑”,“靠”,“邦弗朗尼”或“mix.all”
参数:target.fdr
Desired FDR level (used only for resampling based adjustment)
所需的FDR水平(仅用于重采样为基础调整)
参数:iterations
Number of iterations for stable z-critical.
Z-临界稳定的迭代数。
参数:ALL
If TRUE, the FDR corresponding to all the z-statistics, i.e. for every gene intensity is given.
如果是TRUE,FDR相应的Z-统计,即每一个基因的强度。
Details
详情----------Details----------
Returns the output similar to lpe function, including adjusted FDR. BH and BY give Benjamini-Hochberg and Benjamini-Yekutieli adjusted FDRs (adopted from multtest procedure), Bonferroni adjusted p-values and "mix.all" gives SAM-like FDR adjustment. For further details on the comparisons of each of these methods, please see the reference paper (Rank-invariant resampling...) mentioned below. Users are encouraged to use FDR instead of Bonferrni adjsusted p-value as initial cutoffs while selecting the significant genes. Bonferroni adjusted p-values are provided under Bonferroni method here just for the sake of completion for the users who want it.
返回类似LPE功能,包括调整后的FDR的输出。 BH和给Benjamini Hochberg和Benjamini Yekutieli调整FDRs“(从multtest过程通过)的,邦弗朗尼调整p值和”mix.all“给萨姆像FDR校正。对于这些方法的比较进一步的细节,请参阅下面的参考文件(等级不变的重采样...)提到。鼓励用户使用作为初始截止FDR的Bonferrni adjsusted p值,而不是同时选择的重大基因。调整p值邦弗朗尼规定Bonferroni方法在这里只是为了完成谁想要它为用户着想。
作者(S)----------Author(s)----------
Nitin Jain<a href="mailto:nitin.jain@pfizer.com">nitin.jain@pfizer.com</a>
参考文献----------References----------
differentially expressed genes with a small number of replicated microarrays, Bioinformatics, 1945-1951.
举例----------Examples----------
# Loading the library and the data[载入库和数据]
library(LPE)
data(Ley)
dim(Ley)
# Gives 12488*7 [给12488 * 7]
# First column is ID.[第一列是ID。]
Ley[,2:7] <- preprocess(Ley[,2:7],data.type="MAS5")
# Subsetting the data[子集的数据]
subset.Ley <- Ley[1:1000,]
# Finding the baseline distribution of condition 1 and 2.[寻找条件1和2的基准分配。]
var.1 <- baseOlig.error(subset.Ley[,2:4], q=0.01)
var.2 <- baseOlig.error(subset.Ley[,5:7], q=0.01)
# Applying LPE[应用液相外延]
lpe.result <- lpe(subset.Ley[,2:4],subset.Ley[,5:7], var.1, var.2,
probe.set.name=subset.Ley[,1])
final.result <- fdr.adjust(lpe.result, adjp="resamp", target.fdr=c(0.01,0.05), iterations=1)
final.result
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|