找回密码
 注册
查看: 505|回复: 0

R语言 LMGene包 LMGene()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 23:31:10 | 显示全部楼层 |阅读模式
LMGene(LMGene)
LMGene()所属R语言包:LMGene

                                        LMGene main function
                                         LMGene主要功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

LMGene calls function genediff to calculate the unadjusted gene-specific and posterior p-values of all genes and then calculates the FDR-adjusted p-values of all genes. Significant genes for each factor in model (based on either the gene-specific or posterior FDR-adjusted p-values) are output.
LMGene调用函数genediff计算未经调整的特定基因后的所有基因的P-值,然后计算所有基因的FDR校正p值。输出每个model(基于基因或特定FDR校正后的P-值)的因素的显著基因。


用法----------Usage----------


LMGene(eS, model = NULL, level = 0.05, posterior = FALSE,
method = c("MLE", "MOM", "MOMlog"))



参数----------Arguments----------

参数:eS
An ExpressionSet object.  Any transformation and normalization of exprs(eS) should be conducted prior  to use in LMGene.
ExpressionSet对象。任何改造和标准化exprs(eS)使用前应进行LMGene。


参数:model
Specifies model to be used. Default is to use all variables from eS without interactions. See details.
要使用指定的模型。默认是使用所有变量从ES无相互作用。查看详情。


参数:level
Significance level
显着性水平


参数:posterior
If TRUE, the posterior FDR-adjusted p-values are used in listing significant genes for each factor.  Default is to use gene-specific FDR-adjusted p-values.
如果TRUE,FDR校正后的p值是用来列出各因素的重要基因。默认是使用特定基因FDR校正p值。


参数:method
Method by which the posterior p-values are calculated.  Default is "MLE".
后的P-值计算方法。默认"MLE"。


Details

详情----------Details----------

If you have data in a matrix and information about experimental design factors, then you can use neweS to convert the data into an ExpressionSet object. Please see neweS for more detail.
如果您拥有数据matrix和有关实验设计因素的信息,那么你可以使用neweSExpressionSet对象转换成的数据。请参阅neweS更多细节。

The level argument indicates the False Discovery Rate, e.g. level=0.05 means a 5 percent FDR.
level参数表明假发现率,例如:水平= 0.05意味着5%的FDR。

The model argument is an optional character string, constructed like the right-hand side of a formula for lm. It specifies which of the variables in the ExpressionSet will be used in the model and whether interaction terms will be included. If model=NULL, it uses all variables from the ExpressionSet without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.
model参数是一个可选的字符串,像一个lm公式右边的构建。它指定了ExpressionSet变量将用于在模型是否将包括互动方面。如果model=NULL,它使用ExpressionSet无互动的所有变量。小心使用与因素之间的相互作用方面,这往往导致过度拟合,这将产生一个错误。

See genediff for details of method.
看到genediffmethod细节。


值----------Value----------


参数:lmres
A list with one component for each factor in model. Each component consists of a character vector with one element per significant gene.  If no genes are significant for a given factor, the component for that factor is set to "No significant genes".   
一个每个model的因素列表中的一个组成部分。每一个组成部分,具有显著基因的每一个元素的特征向量。如果没有基因是一个给定的因素,这一因素的组件设置为"No significant genes"。


作者(S)----------Author(s)----------


David Rocke and Geun-Cheol Lee



参考文献----------References----------

approach to multiple testing, Journal of the Royal Statistical Society, Series B, 57, 289–300.
Seminars in Cell & Developmental Biology, 15, 703–713.


参见----------See Also----------

genediff, neweS
genediff,neweS


举例----------Examples----------


library(Biobase)
library(LMGene)

#data[数据]
data(sample.mat)
data(vlist)

raw.eS <- neweS(sample.mat, vlist)

# glog transform data[glog变换数据]
trans.eS <- transeS(raw.eS, lambda = 727, alpha = 56)

# Identify significant genes, using an FDR of 1 percent[识别显着的基因,FDR的1%]
LMGene(trans.eS, level = 0.01)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-4 19:37 , Processed in 0.024792 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表