找回密码
 注册
查看: 1399|回复: 0

R语言 limma包 voom()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 23:29:10 | 显示全部楼层 |阅读模式
voom(limma)
voom()所属R语言包:limma

                                        Transform RNA-Seq Data Ready for Linear Modelling
                                         转换RNA序列数据线性模型准备就绪

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Transform count data to log2-counts per million, estimate the mean-variance relationship and use this to compute appropriate observational-level weights. The data are then ready for linear modelling.
转换到log2数数每百万数据,估计的均值 - 方差关系,并以此来计算适当的观测级重量。然后,这些数据是线性模型的准备。


用法----------Usage----------


voom(counts, design = NULL, lib.size = NULL, normalize.method = "none", plot = FALSE, ...)



参数----------Arguments----------

参数:counts
either a numeric matrix containing raw counts or a DGEList object.
无论是数字matrix包含原始计数或DGEList对象的。


参数:design
design matrix with rows corresponding to samples and columns to coefficients to be estimated.  Defaults to the unit vector meaning that samples are treated as replicates.
设计矩阵估计系数的样品和列对应的行。默认为单位向量的含义,样本被视为重复。


参数:lib.size
numeric vector containing total librazy sizes for each sample. If NULL, library sizes are calculated as column sums of counts.
数字向量,对每一个样品的的总librazy大小。如果NULL,库大小计算列counts款项。


参数:normalize.method
normalization method to be applied to the log2-counts-per-million. Choices are as for the method argument of normalizeBetweenArrays when the data is single-channel.
标准化的方法被应用到的log2-计数每百万。选择是为methodnormalizeBetweenArrays参数时的数据是单声道。


参数:plot
logical value indicating whether a plot of mean-variance trend is displayed.
logical值,指示是否显示均值 - 方差走势图。


参数:...
other arguments are passed to lmFit.
其他参数被传递到lmFit。


Details

详情----------Details----------

This function is intended to process RNA-Seq or ChIP-Seq data prior to linear modelling in limma.
此功能的目的是处理RNA序列或芯片SEQ数据之前在limma的线性建模。

voom is an acronym for mean-variance modelling at the observational level. The key concern is to estimate the mean-variance relationship in the data, then use this to compute appropriate weights for each observation. Count data almost show non-trivial mean-variance relationships. Raw counts show increasing variance with increasing count size, while log-counts typically show a decreasing mean-variance trend. This function estimates the mean-variance trend for log-counts, then assigns a weight to each observation based on its predicted variance. The weights are then used in the linear modelling process to adjust for heteroscedasticity.
voom是一个均值 - 方差模型在观测水平的缩写。关键问题是,估计在数据的均值 - 方差关系,然后使用适当的权重来计算每个观察。计算数据表明几乎不平凡的均值 - 方差关系。原始计数表明增加数大小越来越多的差异,同时记录计数通常表现出下降的均值 - 方差的趋势。这个功能估计log数的均值 - 方差的趋势,然后分配一个权重根据其预测方差每个观测。线性建模过程中的权重,然后用异方差调整。

In an experiment, a count value is observed for each tag in each sample. A tag-wise mean-variance trend is computed using lowess. The tag-wise mean is the mean log2 count with an offset of 0.5, across samples for a given tag. The tag-wise variance is the quarter-root-variance of normalized log2 counts per million values with an offset of 0.5, across samples for a given tag. Tags with zero counts across all samples are not included in the lowess fit. Optional normalization is performed using normalizeBetweenArrays.  Using fitted values of log2 counts from a linear model fit by lmFit, variances from the mean-variance trend were interpolated for each observation. This was carried out by approxfun. Inverse variance weights can be used to correct for mean-variance trend in the count data.
在一项实验中,计数的值观察每个样本中的每个标签。一个明智的标签均值 - 方差的趋势是使用lowess计算。标签明智的平均值是跨越一个给定的标签样本,平均偏移0.5的log2计数。标签明智的方差是规范化的log2计数每百万值的四分之一根方差偏移0.5跨越一个给定的标签样本,。零数在所有样品的标签不包括在LOWESS拟合。可选的标准化是使用normalizeBetweenArrays。使用log2计数的拟合值从lmFit,从均值方差趋势差异的线性模型的拟合插值每个观察。这是开展approxfun的。逆差额重量可以用来纠正均值 - 方差计数数据的趋势。


值----------Value----------

An EList object with the following components:
以下组件EList对象:


参数:E
numeric matrix of normalized expression values on the log2 scale
数字矩阵的log2规模的规范化表达式的值


参数:weights
numeric matrix of inverse variance weights
数字矩阵的逆差额重量


参数:design
numeric matrix of experimental design
实验设计的数字矩阵


参数:lib.size
numeric vector of total library sizes
总库大小的数值向量


参数:genes
dataframe of gene annotation, only if counts was a DGEList object
dataframe基因注释,只有counts的是DGEList对象


作者(S)----------Author(s)----------


Charity Law and Gordon Smyth



参见----------See Also----------

normalizeBetweenArrays
normalizeBetweenArrays

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-4 20:33 , Processed in 0.019875 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表