selectModel(limma)
selectModel()所属R语言包:limma
Select Appropriate Linear Model
选择适当的线性模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Select the best fitting linear model for each gene by minimizing an information criterion.
最小信息准则选择最适合的每一个基因的线性模型。
用法----------Usage----------
selectModel(y, designlist, criterion="aic", df.prior=0, s2.prior=NULL, s2.true=NULL, ...)
参数----------Arguments----------
参数:y
a matrix-like data object, containing log-ratios or log-values of expression for a series of microarrays. Any object class which can be coerced to matrix is acceptable including numeric, matrix, MAList, marrayNorm, ExpressionSet or PLMset.
矩阵如数据对象,包含数比率或一系列微阵列表达log值。任何对象类可以强迫矩阵是可以接受的,包括numeric,matrix,MAList,marrayNorm,ExpressionSet或PLMset。
参数:designlist
list of design matrices
设计矩阵列表
参数:criterion
information criterion to be used for model selection, "aic", "bic" or "mallowscp".
信息标准模型选择使用,"aic","bic"或"mallowscp"。
参数:df.prior
prior degrees of freedom for residual variances. See squeezeVar
之前的自由程度,剩余差额。看到squeezeVar
参数:s2.prior
prior value for residual variances, to be used if df.prior>0.
剩余差额价值之前,必须使用df.prior> 0。
参数:s2.true
numeric vector of true variances, to be used if criterion="mallowscp".
用于数字向量,真正的差异,如果criterion="mallowscp"。
参数:...
other optional arguments to be passed to lmFit
其他可选参数被传递lmFit的
Details
详情----------Details----------
This function chooses, for each probe, the best fitting model out of a set of alternative models represented by a list of design matrices. Selection is by Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC) or by Mallow's Cp.
选择此功能,为每个探针出一套设计矩阵列表所代表的替代车型,最佳拟合模型。选择是由赤池信息准则(AIC),贝叶斯信息标准(BIC)或Mallow的Cp。
The criteria have been generalized slightly to accommodate an information prior on the variances represented by s2.prior and df.prior or by s2.post. Suitable values for these parameters can be estimated using squeezeVar.
广义的标准已经稍微上由s2.prior和df.prior或s2.post代表的差异,以适应信息前。这些参数的适当值可估计使用squeezeVar。
值----------Value----------
List with components
与组件列表
参数:IC
matrix of information criterion scores, rows for probes and columns for models
信息标准分数,型号的探针和列的行矩阵
参数:pref
factor indicating the model with best (lowest) information criterion score
表示模型与最佳(最低)信息准则得分的因素
作者(S)----------Author(s)----------
Alicia Oshlack and Gordon Smyth
参见----------See Also----------
An overview of linear model functions in limma is given by 06.LinearModels.
线性模型功能概述limma由06.LinearModels给出。
举例----------Examples----------
nprobes <- 100
narrays <- 5
y <- matrix(rnorm(nprobes*narrays),nprobes,narrays)
A <- c(0,0,1,1,1)
B <- c(0,1,0,1,1)
designlist <- list(
None=cbind(Int=c(1,1,1,1,1)),
A=cbind(Int=1,A=A),
B=cbind(Int=1,B=B),
Both=cbind(Int=1,AB=A*B),
Add=cbind(Int=1,A=A,B=B),
Full=cbind(Int=1,A=A,B=B,AB=A*B)
)
out <- selectModel(y,designlist)
table(out$pref)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|