printTopGenes(iterativeBMAsurv)
printTopGenes()所属R语言包:iterativeBMAsurv
Write a training set including the top-ranked G variables from a sorted matrix to file
写训练集,包括排名第一的G的一个有序的矩阵变量提交
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function takes a matrix of rank-ordered variables and writes a training set
这个函数接受一个矩阵秩序变量,并写入一个训练集
用法----------Usage----------
printTopGenes (retMatrix, numGlist=c(10, 30, 50, 100, 500, 1000, ncol(trainData)), trainData, myPrefix="sorted_topCoxphGenes_")
参数----------Arguments----------
参数:retMatrix
A three-column matrix where the first column contains the sorted variable names (the top log-ranked variable appears first), the second column contains the original index of the variables, and the third column contains the variable ranking from 1 to ncol(trainData).
一个三列的矩阵,其中的第一列包含排序的变量名(排名顶端的log变量最先出现),第二列包含变量的原始指数,第三列包含变量的排名从1到NCOL(trainData )。
参数:numGlist
A list of values for the desired number of top-ranked variables to be written to file. A separate file will be written for each number G in the list, containing genes 1:G (default = c(10, 30, 50, 100, 500, 1000, ncol(trainData))).
一个世界排名第一的变量被写入文件所需数量的值列表。一个单独的文件将被写入列表中的每个数G,含有基因1:克(默认值= C(10,30,50,100,500,1000,NCOL(trainData)))。
参数:trainData
Data matrix where columns are variables and rows are observations. In the case of gene expression data, the columns (variables) represent genes, while the rows (observations) represent patient samples.
数据矩阵列变量和行观察。在基因表达数据的情况下,列(变量)代表的基因,而行(意见)代表患者样本。
参数:myPrefix
A string prefix for the filename (default = 'sorted\_topCoxphGenes\_').
一个字符串前缀的文件名(默认值=排序\ _topCoxphGenes \ _“)。
Details
详情----------Details----------
This function is called by iterateBMAsurv.train.predict.assess. It is meant to be used in conjunction with singleGeneCoxph, as the retMatrix
此功能被称为iterateBMAsurv.train.predict.assess。它是指在singleGeneCoxph一起使用,如retMatrix
值----------Value----------
A file or files consisting of the training data sorted in descending order
按降序排序的训练数据组成的一个或多个文件
参考文献----------References----------
Iterative Bayesian Model Averaging for Survival Analysis. Manuscript in Progress.
Bayesian model selection in social research (with Discussion). Sociological Methodology 1995 (Peter V. Marsden, ed.), pp. 111-196, Cambridge, Mass.: Blackwells.
Bayesian Model Averaging in Proprtional Hazard Models: Assessing the Risk of a Stroke. Applied Statistics 46: 433-448.
Bayesian Model Averaging: Development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 21: 2394-2402.
参见----------See Also----------
iterateBMAsurv.train.predict.assess, singleGeneCoxph, trainData, trainSurv, trainCens,
iterateBMAsurv.train.predict.assess,singleGeneCoxph,trainData,trainSurv,trainCens
举例----------Examples----------
library(BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)
## Start by ranking and sorting the genes; in this case we use the Cox Proportional Hazards Model[#开始排名和排序的基因,在这种情况下,我们使用Cox模型]
sorted.genes <- singleGeneCoxph(trainData, trainSurv, trainCens)
## Write top 100 genes to file[#写提交的前100个基因。]
sorted.top.genes <- printTopGenes(retMatrix=sorted.genes, 100, trainData)
## The file, 'sorted_topCoxphGenes_100', is now in the working R directory.[#文件,“sorted_topCoxphGenes_100,现在是在r目录的工作。]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|