iChip1(iChip)
iChip1()所属R语言包:iChip
Bayesian modeling of ChIP-chip data through hidden Ising models
芯片的芯片数据通过隐藏伊辛模型的贝叶斯建模
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Function iChip1 implements the algorithm of modeling ChIP-chip data through a standard hidden Ising model.
功能iChip1实现建模芯片的芯片数据的算法,通过一个标准的隐藏伊辛模型。
用法----------Usage----------
iChip1(enrich,burnin=2000,sampling=10000,sdcut=2,beta0=3,
minbeta=0,maxbeta=10,normsd=0.1,verbose=FALSE)
参数----------Arguments----------
参数:enrich
A vector containing the probe enrichment measurements. The measurements must be sorted, firstly by chromosome and then by genomic position. The measurements could be log2 ratios of the intensities of IP-enriched and control samples for a single replicate, or summary statistics such as t-like statistics or mean differences for multiple replicates. We suggest to use the empirical Bayesian t-statistics implemented in the limma package for multiple replicates. Note, binding probes must have a larger mean value than non-binding probes.
一个向量,包含探针富集测量。必须按测量,一是由染色体和基因组的位置。测量可能的log2 IP的丰富和控制样品的强度比为一个单一的复制,或如类似T-统计或多个重复的平均差异的汇总统计。我们建议使用的经验贝叶斯limma包在多个复制实施的t-统计。注意,结合探针必须有一个更大的平均值比非结合的探针。
参数:burnin
The number of MCMC burn-in iterations.
烧在迭代的MCMC方法。
参数:sampling
The number of MCMC sampling iterations. The posterior probability of binding and non-binding state is calculated based on the samples generated in the sampling period.
的MCMC采样迭代。在抽样期间产生的样本的基础上,绑定和非绑定状态的后验概率计算。
参数:sdcut
A value used to set the initial state for each probe. The enrichment measurements of a enriched probe is typically several standard deviations higher than the global mean enrichment measurements.
A值用来设置每个探针的初始状态。浓缩了丰富的探针测量通常是几个标准差高于全球平均富集测量。
参数:beta0
The initial parameter used to control the strength of interaction between probes, which must be a positive value. A larger value of beta represents a stronger interaction between probes. The value for beta0 could not be too small (e.g. < 1.0). Otherwise, the Ising system may not be able to reach a super-paramagnetic state.
初始参数用来控制探针强度之间的互动,它必须是一个积极的价值。的β值越大,代表之间的强相互作用探针。 beta0值不能太小(如<1.0)。否则,伊辛系统未必能达到超顺磁性状态。
参数:minbeta
The minimum value of beta allowed.
的β允许的最低值。
参数:maxbeta
The maximum value of beta allowed.
的β允许的最大值。
参数:normsd
iChip1 uses a Metropolis random walk proposal for sampling from the posterior distributions of the model parameters. The proposal distribution is a normal distribution with mean 0 and standard deviation specified by normsd.
iChip1使用从模型参数的后验分布的抽样都市报随机游动的建议。建议分布是正态分布,均值为0,标准偏差normsd指定。
参数:verbose
A logical variable. If TRUE, the number of completed MCMC iterations is reported.
逻辑变量。如果是TRUE,据悉完成的MCMC迭代。
值----------Value----------
A list with the following elements.
以下内容的列表。
参数:pp
The posterior probabilities of probes in the binding/enriched state. There is a strong evidence to be a binding/enriched probe if the probe has a posterior probability close to1.
探针在绑定/丰富的状态的后验概率。有一个有力的证据是有约束力的/丰富的探针,如果探针具有后验概率接近TO1。
参数:beta
The posterior samples of the interaction parameter of the Ising model.
伊辛模型的相互作用参数后的样品。
参数:mu0
The posterior samples of the mean measurement of the probes in the non-binding/non-enriched state.
后平均在non-binding/non-enriched状态的探针测量样品。
参数:mu1
The posterior samples of the mean measurement of the probes in the binding/enriched state.
后样品的平均测量探针绑定/丰富的国家。
参数:lambda
The posterior samples of the precision of the enrichment measurements of the probes.
后样品的探针富集测量精度。
作者(S)----------Author(s)----------
Qianxing Mo <a href="mailto:moq@mskcc.org">moq@mskcc.org</a>
参考文献----------References----------
data analysis. Bioinformatics 26(6), 777-783. doi:10.1093/bioinformatics/btq032
参见----------See Also----------
iChip2,enrichreg, lmtstat
iChip2,enrichreg,lmtstat
举例----------Examples----------
# oct4 and p53 data are log2 transformed and quantile-normalized intensities[Oct4和p53的数据log2转化和归位数的强度]
# Analyze the Oct4 data (average resolution is about 280 bps)[分析Oct4的数据(平均分辨率为大约280个基点)]
data(oct4)
### sort oct4 data, first by chromosome then by genomic position[#排序Oct4的数据,首先由染色体基因组的位置,然后]
oct4 = oct4[order(oct4[,1],oct4[,2]),]
# calculate the enrichment measurements --- the limma t-statistics[计算富集测量--- limma t-统计]
oct4lmt = lmtstat(oct4[,5:6],oct4[,3:4])
# Apply the standard Ising model to the ChIP-chip data[标准伊辛模型应用到芯片的芯片数据]
oct4res = iChip1(enrich=oct4lmt,burnin=1000,sampling=5000,sdcut=2,
beta0=3,minbeta=0,maxbeta=10,normsd=0.1)
# check the enriched regions detected by the Ising model using[检查丰富的区域伊辛模型检测]
# posterior probability (pp) cutoff at 0.9 or FDR cutoff at 0.01[后验概率(PP)截止0.9或FDR在0.01截止]
enrichreg(pos=oct4[,1:2],enrich=oct4lmt,pp=oct4res$pp,cutoff=0.9,
method="ppcut",maxgap=500)
enrichreg(pos=oct4[,1:2],enrich=oct4lmt,pp=oct4res$pp,cutoff=0.01,
method="fdrcut",maxgap=500)
# Analyze the p53 data (average resolution is about 35 bps)[分析p53的数据(平均分辨率是约35个基点)]
# uncommenting the following code for running[注释下面的代码运行]
# data(p53)[数据(P53)]
# must sort the data first[必须首先对数据进行排序]
# p53 = p53[order(p53[,1],p53[,2]),][P53 = P53 [订单(P53 [1],P53 [2])]]
# p53lmt = lmtstat(p53[,9:14],p53[,3:8])[p53lmt = lmtstat(P53 [9:14],P53 [3:8])]
# p53res = iChip1(p53lmt,burnin=1000,sampling=5000,sdcut=2,beta0=3,[p53res = iChip1(p53lmt,燃尽= 1000,采样= 5000 beta0,sdcut = 2,= 3,]
# minbeta=0,maxbeta=10,normsd=0.1)[minbeta maxbeta = 0,= 10,normsd = 0.1)]
# enrichreg(pos=p53[,1:2],enrich=p53lmt,pp=p53res$pp,cutoff=0.9,[enrichreg(POS = P53 [1:2],丰富= p53lmt,PP = p53res美元PP,截止= 0.9,]
# method="ppcut",maxgap=500)[方法=的“ppcut,maxgap = 500)]
# enrichreg(pos=p53[,1:2],enrich=p53lmt,pp=p53res$pp,cutoff=0.01,[enrichreg(POS = P53 [1:2],充实= p53lmt,PP = p53res美元PP,截止= 0.01,]
# method="fdrcut",maxgap=500)[方法=的“fdrcut,maxgap = 500)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|