normalizeCtData(HTqPCR)
normalizeCtData()所属R语言包:HTqPCR
Normalization of Ct values from qPCR data.
qPCR数据从CT值的标准化。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function is for normalizing Ct data from high-throughput qPCR platforms like the TaqMan Low Density Arrays. Normalization can be either within or across different samples.
此功能是一样的TaqMan低密度阵列的高吞吐量的qPCR平台标准化CT数据。标准化可以是内部或跨越不同的样品。
用法----------Usage----------
normalizeCtData(q, norm = "deltaCt", deltaCt.genes = NULL, scale.rank.samples, rank.type = "pseudo.median", Ct.max = 35, geo.mean.ref, verbose = TRUE)
参数----------Arguments----------
参数:q
object of class qPCRset.
对象类qPCRset。
参数:norm
character string with partial match allowed, the normalisation method to use. "deltaCt" (default) , "scale.rankinvariant", "norm.rankinvariant", "quantile" and "geometric.mean" are implemented. See details.
部分允许匹配的字符串的字符,规范化的方法来使用。的“deltaCt”(默认),的“scale.rankinvariant”,“norm.rankinvariant”,“分量”和“geometric.mean”实施。查看详情。
参数:deltaCt.genes
character vector, the gene(s) to use for deltaCt normalization. Must correspond to some of the featureNames in q or NULL, in which case the endogenous controls from featureType are used.
特征向量,(S)的基因使用deltaCt标准化。必须符合一些featureNames或q,在这种情况下,从内对照NULL用于featureType在。
参数:scale.rank.samples
integer, for the "scale.rankinvariant" method, how many samples should a feature be rank invariant across to be included. Defaults to number of samples-1.
整数,为“scale.rankinvariant”的方法,应该多少样本,功能的列入排名不变。默认-1样品的数量。
参数:rank.type
string, the reference sample for the rank invariant normalisation. Either "pseudo.median" or "pseudo.mean" for using the median or mean across samples as a pseudo-reference sample.
字符串的排名不变标准化的参考样本。要么“pseudo.median”或的“pseudo.mean”使用中位数或意味着整个作为一个伪参考样本的样本。
参数:Ct.max
numeric, Ct values above this will be ignored when identifying rank invariant genes.
确定排名不变的基因时,数字,CT高于此值将被忽略。
参数:geo.mean.ref
numeric, the reference sample to scale to for the "geometric.mean" method. Defaults tot he first sample..
数字,参考样本规模的“geometric.mean法”。默认TOT他第一个样本......
参数:verbose
boolean, should some information be printed to the prompt.
布尔,应一些信息打印到提示。
Details
详情----------Details----------
"quantile" will make the expression distributions across all cards more or less identical. "deltaCt" calculates the standard deltaCt values, i.e. subtracts the mean of the chosen controls from all other values on the array. "scale.rankinvariant" sorts features from each sample based on Ct values, and identifies a set of features that remain rank invariant, i.e. whose ordering is constant. The average of these rank invariant features is then used to scale the Ct values on each array individually. "norm.rankinvariant" also identifies rank invariant features between each sample and a reference, and then uses these features to generate a normalisation curve individually for each sample by smoothing. "geometric.mean" calculates the geometric mean of all Ct values below Ct.max in each sample, and scales the Ct values accordingly.
“分量”,将所有卡的表达分布或多或少相同。 “deltaCt”计算标准deltaCt值,即减去平均阵列上的所有其他值的选择控制。根据“scale.rankinvariant”的各种功能从每个样品Ct值,并确定了一套功能,保持排名不变,即,其顺序是不变的。这些排名不变特征的平均值,然后单独使用每个阵列扩展Ct值。 “norm.rankinvariant”还确定了每个样品和参考之间的排名不变的特点,然后使用这些功能来生成标准化每个样品分别由平滑曲线。 “geometric.mean”计算每个样品的Ct值低于Ct.max所有的几何平均数,和规模相应的Ct值。
For the rank invariant methods it can make a significant difference whether high Ct values, such as "40" or something else being used for undetermined Ct values is removed during the normalisation using the Ct.max parameter. "norm.rankinvariant" also depends on having enough rank invariant genes for generating a robust smoothing curve.
对于排名不变的方法,它可以使一个重要的区别,高Ct值,如“40”或别的东西未定Ct值,是否在使用Ct.max参数标准化删除。 “norm.rankinvariant”,也取决于有足够的排名不变的基因产生一个强大的平滑曲线。
"quantile" is base on normalizeQuantiles from limma, and the rank invariant normalisations implement methods from normalize.invariantset in package affy.
“分量”是碱基normalizeQuantiles从limma,排名不变normalisations实施normalize.invariantset包affy的方法。
The distribution of Ct values before/after normalisation can be assessed with the function plotCtDensity.
Ct值的分布标准化前/后可评估的功能plotCtDensity。
值----------Value----------
An object of class qPCRset like the input.
像输入对象类qPCRset。
作者(S)----------Author(s)----------
Heidi Dvinge
参见----------See Also----------
normalize.invariantset for the rank invariant normalisations, normalizequantiles and plotCtDensity
:normalize.invariantset排名不变normalisations的,normalizequantiles和plotCtDensity
举例----------Examples----------
# Load example data[加载示例数据]
data(qPCRraw)
# Perform different normalisations[执行不同的normalisations]
dnorm <- normalizeCtData(qPCRraw, norm="deltaCt", deltaCt.genes="Gene1")
qnorm <- normalizeCtData(qPCRraw, norm="quantile")
nrnorm <- normalizeCtData(qPCRraw, norm="norm.rankinvariant")
srnorm <- normalizeCtData(qPCRraw, norm="scale.rankinvariant")
gnorm <- normalizeCtData(qPCRraw, norm="geometric.mean")
# Normalized versus raw data[归与原始数据]
cols <- rep(brewer.pal(6, "Spectral"), each=384)
plot(exprs(qPCRraw), exprs(dnorm), pch=20, col=cols, main="deltaCt normalization")
plot(exprs(qPCRraw), exprs(qnorm), pch=20, col=cols, main="Quantile normalization")
plot(exprs(qPCRraw), exprs(nrnorm), pch=20, col=cols, main="norm.rankinvariant")
plot(exprs(qPCRraw), exprs(srnorm), pch=20, col=cols, main="scale.rankinvariant")
plot(exprs(qPCRraw), exprs(gnorm), pch=20, col=cols, main="geometric.mean")
# With or without removing high Ct values[有或没有消除高Ct值]
nrnorm <- normalizeCtData(qPCRraw, norm="norm.rankinvariant")
nrnorm2 <- normalizeCtData(qPCRraw, norm="norm.rankinvariant", Ct.max=40)
plot(exprs(nrnorm), exprs(nrnorm2), pch=20, col=cols, xlab="Ct.max = 35", ylab="Ct.max = 40")
# Distribution of the normalised data[规范化的数据分布]
par(mfrow=c(2,3), mar=c(3,3,2,1))
plotCtDensity(qPCRraw, main="Raw Ct values")
plotCtDensity(dnorm, main="deltaCt")
plotCtDensity(qnorm, main="quantile")
plotCtDensity(srnorm, main="scale.rankinvariant")
plotCtDensity(nrnorm, main="norm.rankinvariant")
plotCtDensity(gnorm, main="geometric.mean")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|