gene70(genefu)
gene70()所属R语言包:genefu
Function to compute the 70 genes prognosis profile (GENE70) as published by van't Veer et al. 2002
函数来计算的70个基因预后的个人资料(GENE70)范特发表韦埃尔等。 2002年
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function computes signature scores and risk classifications from gene expression values following the algorithm used for the 70 genes prognosis profile (GENE70) as published by van't Veer et al. 2002.
此函数计算从基因表达值的签名成绩和风险分类后的70个基因预后的文件作为范特发表韦埃尔等(GENE70)所使用的算法。 2002年。
用法----------Usage----------
gene70(data, annot, do.mapping = FALSE, mapping,
std = c("none", "scale", "robust"), verbose = FALSE)
参数----------Arguments----------
参数:data
Matrix of gene expressions with samples in rows and probes in columns, dimnames being properly defined.
矩阵中的行和列的探针样品的基因表达,dimnames被正确定义。
参数:annot
Matrix of annotations with at least one column named "EntrezGene.ID", dimnames being properly defined.
矩阵至少有一列名为“EntrezGene.ID”的注释,dimnames被正确定义。
参数:do.mapping
TRUE if the mapping through Entrez Gene ids must be performed (in case of ambiguities, the most variant probe is kept for each gene), FALSE otherwise.
TRUE如果通过Entrez基因ID的映射必须执行(含糊不清的情况下,每个基因保存最变种探针),FALSE否则。
参数:mapping
Matrix with columns "EntrezGene.ID" and "probe" used to force the mapping such that the probes are not selected based on their variance.
列“EntrezGene.ID”和“探针”使用强制映射探针没有被选中,根据其方差矩阵。
参数:std
Standardization of gene expressions: scale for traditional standardization based on mean and standard deviation, robust for standardization based on the 0.025 and 0.975 quantiles, none to keep gene expressions unchanged.
基因表达的标准化:scale根据均值和标准差,传统的标准化robust为0.025和0.975分位数的标准化,none保持基因的表达不变。
参数:verbose
TRUE to print informative messages, FALSE otherwise.
TRUE打印翔实的消息,FALSE否则。
值----------Value----------
参数:score
Continuous signature scores
连续签名分数
参数:risk
Binary risk classification, 1 being high risk and 0 being low risk.
二进制风险分类,1是高风险和0是低风险。
参数:mapping
Mapping used if necessary.
如有必要,测绘使用。
参数:probe
If mapping is performed, this matrix contains the correspondence between the gene list (aka signature) and gene expression data.
如果进行映射,这个矩阵中包含的基因列表(又名签名)和基因表达数据之间的对应关系。
作者(S)----------Author(s)----------
Benjamin Haibe-Kains
参考文献----------References----------
参见----------See Also----------
nkis
nkis
举例----------Examples----------
## load GENE70 signature[#负载GENE70签名]
data(sig.gene70)
## load NKI dataset[#负载NKI日经指数集]
data(nkis)
## compute relapse score[#计算复发评分]
rs.nkis <- gene70(data=data.nkis)
table(rs.nkis$risk)
## note that the discrepancies compared to the original publication[#注意的差异相比,原始出版物]
## are closed to the official cutoff, raising doubts on its exact value.[#封闭正式截止,提高其确切价值的怀疑。]
## computation of the signature scores on a different microarray platform[#计算不同的芯片平台上的签名分数]
## load VDX dataset[#加载VDX的数据集]
data(vdxs)
## compute relapse score[#计算复发评分]
rs.vdxs <- gene70(data=data.vdxs, annot=annot.vdxs, do.mapping=TRUE)
table(rs.vdxs$risk)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|