找回密码
 注册
查看: 499|回复: 0

R语言 GeneAnswers包 geneFunSummarize()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 18:38:36 | 显示全部楼层 |阅读模式
geneFunSummarize(GeneAnswers)
geneFunSummarize()所属R语言包:GeneAnswers

                                        Summarize gene functions (annotations) based collective annotation evidences associated with ontology terms
                                         总结基因的功能(注释)根据集体的注解本体术语相关的证据

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Summarize gene functions (annotations) based collective annotation evidences associated with ontology terms
总结基因的功能(注释)根据集体的注解本体术语相关的证据


用法----------Usage----------


geneFunSummarize(genes, gene2Onto, Onto2offspring, rmOntoID = c("DOID:4", "DOID:63"), p.value.th = 0.01, fdr.adjust = "fdr", minNumTh = 2, includeTestOnto = TRUE, directMapConstraint = FALSE)



参数----------Arguments----------

参数:genes
a vector of Entrez Gene IDs to do gene function summarization
Entrez基因向量的ID,以做基因功能汇总


参数:gene2Onto
a list gene 2 Ontology mapping (Ontology IDs, duplicated IDs are allowed, which is equivalent to multiple  evidences with the same function)
列表基因本体映射(本体论的ID,重复的ID是允许的,这是具有相同的功能相当于多个证据)


参数:Onto2offspring
a list or graphNEL object shows the relations of a ontology id to all its offsprings
显示列表或graphNEL对象的本体ID关系到它的所有后代


参数:rmOntoID
some ontology ids (like root id or too general ontology ids) can be pre-removed in the estimation
一些本体IDS(如根ID或过于笼统本体IDS)可以预先在估计中删除


参数:p.value.th
the p-value threshold used to determine the significance of function enrichment
p值阈值,用于确定富集功能的意义


参数:fdr.adjust
the FDR estimation methods used to estimate the FDR of function enrichment
用于估计功能浓缩FDRFDR估计方法


参数:minNumTh
the minimum number of evidences required to claim as significant enriched ontology term
显著丰富本体术语声称需要证据的最低数量


参数:includeTestOnto
whether include the direct evidence of the testing ontology term itself
是否包括测试本体词本身的直接证据


参数:directMapConstraint
whether only consider the ontology ids with direct evidence mappings  
是否只考虑直接证据映射的本体IDS


值----------Value----------

The function return is a list with the same length of input "genes". Each element of the list is the summarization of a gene. The gene summarization is also a list with the following items
函数返回的是一个与输入的“基因”的相同长度的列表。列表中的每个元素是一个基因的总结。基因的总结,也是一个与下列项目列表


参数:allEvidence
all evidences (ontology terms) related with the testing gene
所有的证据(本体术语)与测试基因有关


参数:sigOntoInfo
the significant ontology terms associated with the testing gene
本体论与测试基因相关的重大条款


参数:bestOntoInfo
the information of the most significant ontology term associated with the testing gene
信息的最重要的本体与测试基因相关的术语

The gene summarization object also includes the attributes of the input parameter settings.
基因概括对象还包括输入参数设置的属性。


作者(S)----------Author(s)----------



Pan Du, Simon Lin, Gilbert Feng, Warren Kibbe




参考文献----------References----------



参见----------See Also----------

See Also plotGeneFunSummary and simplifyGeneFunSummary
plotGeneFunSummary和simplifyGeneFunSummary


举例----------Examples----------


        data(DO)
        ## test all ontology terms related with gene PEBP1 (Entrez Gene ID: 5037)[#测试所有本体条款PEBP1与基因有关(Entrez基因ID:5037)]
        geneSummary <- geneFunSummarize('5037', gene2DO.map, DO.graph.closure.gene, p.value.th=0.01, fdr.adjust='none')
        ## the p.values of all related ontology terms[#p.values所有相关的本体条件]
        pValue <- sapply(geneSummary[[1]]$sigOntoInfo, function(x) x$pValue)
        pValue
        ## plot the relations of the summarized gene annotation[#绘制汇总基因注解的关系]
        plotGeneFunSummary(geneSummary, onto.graph=DO.graph.gene, onto.graph.closure=DO.graph.closure.gene, ID2Name=DO.terms, p.value.th=0.0001, miniSetPvalue=10^-5, saveImage=FALSE)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-8 04:06 , Processed in 0.030897 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表