gof(edgeR)
gof()所属R语言包:edgeR
Goodness of Fit Tests for Multiple GLM Fits
善良的多的GLM配合拟合检验
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Conducts deviance goodness of fit tests for each fit in a DGEGLM object
DGEGLM对象进行偏差善良的每个合适的契合测试
用法----------Usage----------
gof(glmfit, pcutoff=0.1)
参数----------Arguments----------
参数:glmfit
DGEGLM object containing results from fitting NB GLMs to genes in a DGE dataset. Output from glmFit.
DGEGLM对象,其中包含从装修注意GLMs结果在胃排空集的基因。输出glmFit。
参数:pcutoff
scalar giving the cut-off value for the Holm-adjusted p-value. Genes with Holm-adjusted p-values lower than this cutoff value are flagged as "dispersion outlier" genes.
标给的霍尔姆调整p值的临界值。霍尔姆调整后的P-值超过这个临界值低的基因标记为“分散离群的基因。
值----------Value----------
This function returns a list with the following components:
此函数返回由以下部分组成名单:
参数:gof.statistics
numeric vector of deviance statistics, which are the statistics used for the goodness of fit test
矢量偏差统计的数字,这是用于拟合优度检验统计
参数:gof.pvalues
numeric vector of p-values providing evidence of poor fit; computed from the chi-square distribution on the residual degrees of freedom from the GLM fits.
适合穷人适合提供证据的p值;从自由的残留度的卡方分布的GLM计算的数字向量。
参数:outlier
logical vector indicating whether or not each gene is a "dispersion outlier" (i.e.~the model fit is poor for that gene indicating that the dispersion estimate is not good for that gene).
逻辑向量表示是否每个基因是一个“分散离群”(即模型拟合,表明分散的估计是不是该基因的基因差)。
参数:df
scalar, the residual degrees of freedom from the GLM fit for which the goodness of fit statistics have been computed. Also the degrees of freedom for the goodness of fit statistics for the LR (chi-quare) test for significance.
标,善良的拟合统计已计算的GLM适合自由的残余度。也合适的统计显着性检验的LR(CHI-单方)善良的自由度。
作者(S)----------Author(s)----------
Davis McCarthy
参见----------See Also----------
glmFit for more information on fitting NB GLMs to DGE data.
glmFit更多装修注意GLMs上的信息DGE数据。
举例----------Examples----------
nlibs <- 3
ntags <- 100
dispersion.true <- 0.1
# Make first transcript respond to covariate x[设为第一誊响应协变量x]
x <- 0:2
design <- model.matrix(~x)
beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))
mu.true <- 2^(beta.true %*% t(design))
# Generate count data[生成计数数据]
y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)
y <- matrix(y,ntags,nlibs)
colnames(y) <- c("x0","x1","x2")
rownames(y) <- paste("Gene",1:ntags,sep="")
d <- DGEList(y)
# Normalize[标准化]
d <- calcNormFactors(d)
# Fit the NB GLMs[适合NB的GLMs]
fit <- glmFit(d, design, dispersion=dispersion.true)
# Check how good the fit is for each gene[检查适合每个基因是如何的好]
gof(fit)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|