comp.stat(DEDS)
comp.stat()所属R语言包:DEDS
Computing Test Statistics for Differential Expression
计算测试统计差异表达
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function computes test statistics, e.g., t-statistics, F-statistics, SAM, fold changes, moderated t or F statistics, B statistics, for each row of a microarray data matrix.
此函数计算检验统计量,例如,t-统计量,F-统计,SAM的,褶皱的变化,缓和T或F统计,乙统计,微阵列数据矩阵的每一行。
用法----------Usage----------
comp.stat(X, L, test = c("t", "fc", "sam", "f", "modt", "modf", "B"), extra = NULL)
参数----------Arguments----------
参数:X
A matrix, with m rows corresponding to variables (hypotheses) and n columns to observations. In the case of gene expression data, rows correspond to genes and columns to mRNA samples. The data can be read using read.table.
一个矩阵,用m行相应的变量(假设)和n列观察。在基因表达数据的情况下,行对应mRNA样品的基因和列。可以读取数据,使用read.table。
参数:L
A vector of integers corresponding to observation (column) class labels. For k classes, the labels must be integers between 0 and k-1.
观察(列)类的标签对应的整数向量。对于k类,标签必须是0k-1之间的整数。
参数:test
A character string specifying the statistic to be used to test the null hypothesis of no association between the variables and the class labels.<br> <table summary="Rd table"> <tr> <td align="left"> test="t": </td><td align="left"> t-statistics; </td> </tr> <tr> <td align="left"> test="f": </td><td align="left"> F-statistics;</td> </tr> <tr> <td align="left"> test="fc":</td><td align="left"> fold changes;</td> </tr> <tr> <td align="left"> test="sam": </td><td align="left"> SAM-statistics; </td> </tr> <tr> <td align="left"> test="modt": </td><td align="left"> moderated t-statistics;</td> </tr> <tr> <td align="left"> test="modf": </td><td align="left"> moderated F-statistics; </td> </tr> <tr> <td align="left"> test="B": </td><td align="left"> B-statistics.</td> </tr> </table>
一个字符串指定的统计,被用来测试空假设之间没有关联的变量和类的标签。参考<table summary="Rd table"> <TR> <TD ALIGN="LEFT">test="t":</ TD> <td ALIGN="LEFT"> t-统计量; </ TD> </ TR> <TR> <td ALIGN="LEFT">test="f":</ TD> < TD对齐=“左”的F-统计; </ TD> </ TR> <TR> <TD ALIGN="LEFT">test="fc":</ TD> <td ALIGN="LEFT">倍的变化</ TD> </ TR> <TR> <TD ALIGN="LEFT"> test="sam":</ TD> <td ALIGN="LEFT"> SAM统计; </ TD> </ TR> <TR> <TD ALIGN="LEFT">test="modt":</ TD> <TD ALIGN="LEFT">主持t-统计量; </ TD> </ TR> <TR> <TD对齐=“离开“>test="modf":</ TD> <td ALIGN="LEFT">放缓F-统计; </ TD> </ TR> <TR> <td ALIGN="LEFT">test="B" :</ TD> <TD ALIGN="LEFT">的B-统计</ TD> </ TR> </ TABLE>
参数:extra
Extra parameter needed for the test specified; see deds.genExtra.
需要额外的参数指定的测试;看到deds.genExtra。
Details
详情----------Details----------
The function comp.stat interfaces to a C function and computes various statistics for differential expression in the C environment and therefore faster than functions in R. However, functions in R that are implemented in the DEDS packages may have more flexibility in terms of specifications of arguments. Below is a table the details comp.stat and its equivalent R functions in the DEDS package. Note that all the R functions listed in the 2nd column of the table below return a function with bindings for a series of arguments which accept the microarray data matrix as its single argument and compute accordingly statistics. <br>
函数comp.stat一个C函数的接口,并计算在C环境下的差异表达,因此比在R的功能,但速度更快的各种统计数据,研发实现的功能是在DEDS的包可能在以下方面有更多的灵活性规格参数。下面是一个表的细节comp.stat及其在DEDS的包相当于R函数。请注意,下面的R表的第二列中列出的所有功能,返回绑定一个函数接受单个参数的微阵列数据矩阵的一系列参数,并计算相应的统计。参考
值----------Value----------
A vector of test statistics for each row of the matrix.
矩阵的每一行的统计测试向量。
作者(S)----------Author(s)----------
Yuanyuan Xiao, <a href="mailto:yxiao@itsa.ucsf.edu">yxiao@itsa.ucsf.edu</a>, <br>
Jean Yee Hwa Yang, <a href="mailto:jean@biostat.ucsf.edu">jean@biostat.ucsf.edu</a>.
参考文献----------References----------
data. Statistica Sinica 12, 31-46.
assessing differential expression in microarray experiments. http://www.statsci.org/smyth/pubs/ebayes.pdf
参见----------See Also----------
deds.genExtra, for B statistics: lm.series and ebayes
deds.genExtra,乙统计:lm.series和ebayes
举例----------Examples----------
X <- matrix(rnorm(1000,0,0.5), nc=10)
L <- rep(0:1,c(5,5))
# genes 1-10 are differentially expressed[差异表达基因的1-10]
X[1:10,6:10]<-X[1:10,6:10]+1
# t statistics[t统计]
tstat <- comp.stat(X, L, test="t")
# SAM, fudge factor set as the median of pooled genewise standard deviations[SAM,捏造因素集,中位数汇集了2-6。标准偏差]
samstat <- comp.stat(X, L, test="sam")
# SAM, fudge factor set as the 90% of pooled genewise standard deviations[SAM,捏造为90%,汇集了2-6。标准偏差的因素集]
samstat <- comp.stat(X, L, test="sam", extra=c(0.9))
# moderated t[主持ţ]
modtstat <- comp.stat(X, L, test="modt")
# B, proportion of differentially expressed genes is set at default, 1%[,差异表达基因的比例设置在默认情况下,1%]
Bstat <- comp.stat(X, L, test="B")
# B, proportion of differentially expressed genes is set at 10%[,差异表达基因的比例定为10%]
Bstat <- comp.stat(X, L, test="B", extra=c(0.1))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|