xcluster(ctc)
xcluster()所属R语言包:ctc
Hierarchical clustering
层次聚类
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Performs a hierarchical cluster analysis on a set of
执行一套层次聚类分析
用法----------Usage----------
xcluster(data,distance="euclidean",clean=FALSE,tmp.in="tmp.txt",tmp.out="tmp.gtr")
参数----------Arguments----------
参数:data
a matrix (or data frame) which provides the data to analyze
矩阵(或数据框)提供的数据分析
参数:distance
The distance measure used with Xcluster. This must be one of "euclidean", "pearson" or "notcenteredpearson". Any unambiguous substring can be given.
与Xcluster使用的距离度量。这必须是一个"euclidean","pearson"或"notcenteredpearson"。可以给出任何明确的子串。
参数:clean
a logical value indicating whether you want the true distances (clean=FALSE), or you want a clean dendrogram
一个逻辑值,指明是否要真正的距离(clean=FALSE),或者你想要一个干净的树状
参数:tmp.in, tmp.out
temporary files for Xcluster
为Xcluster临时文件
Details
详情----------Details----------
Available distance measures are (written for two vectors x and y):
可用距离措施(两个向量的书面x和y):
Euclidean: Usual square distance between the two vectors (2 norm).
欧几里德:平常两个向量(2规范)之间的距离平方。
Pearson: 1 - cor(x,y)
皮尔森:1 - cor(x,y)
Pearson not centered: 1 - [ sum x_i y_i ] / sqrt[ sum x_i^2 * sum y_i^2 ]
皮尔逊不居中:1 - [ sum x_i y_i ] / sqrt[ sum x_i^2 * sum y_i^2 ]
Xcluster does not use usual agglomerative methods (single, average, complete), but compute the distance between each groups' barycenter for the distance between two groups.
xcluster不使用通常的凝聚方法(单人,平均完成),但两组之间的距离计算每个组的重心之间的距离。
This have a problem for this kind of data:
这对这种数据的问题:
Ie: a triangular in R^2, the distance between A and B is larger than the distance between the group A,B and C (with euclidean distance).
即:在ŕ三角^2,A和B之间的距离是大于A,B组和C(与欧氏距离)之间的距离。
For that case it can be useful to use clean=TRUE and that mean that you must not consider A and B as a group without C.
对于这种情况下,它可以很有用clean=TRUE“意味着作为一个群体,你必须不考虑A和B没有C。
值----------Value----------
An object of class hclust which describes the tree produced by the clustering process. The object is a list with components:
一个对象的的类hclust介绍聚类过程中所产生的树。对象是一个组件列表:
参数:merge
an n-1 by 2 matrix. Row i of merge describes the merging of clusters at step i of the clustering. If an element j in the row is negative, then observation -j was merged at this stage. If j is positive then the merge was with the cluster formed at the (earlier) stage j of the algorithm. Thus negative entries in merge indicate agglomerations of singletons, and positive entries indicate agglomerations of non-singletons.
n-12矩阵。行imerge介绍一步i聚类簇的合并。如果一个元素j行是否定的,然后观察-j在这个阶段合并。 j如果是积极的,那么合并形成的阶段(早)j算法聚类。因此merge负项表明单身群,并积极的条目表明,非单身群。
参数:height
a set of n-1 non-decreasing real values. The clustering height: that is, the value of the criterion associated with the clustering method for the particular agglomeration.
设置了n-1实际值非递减。聚类的高度,即:与聚类相关的标准值method为特定的集聚。
参数:order
a vector giving the permutation of the original observations suitable for plotting, in the sense that a cluster plot using this ordering and matrix merge will not have crossings of the branches.
矢量给予适合用于绘制的原始观测的排列,在这个意义上使用这个顺序和矩阵merge聚类图不会有分支机构的口岸。
参数:labels
labels for each of the objects being clustered.
标签为每个正在聚集的对象。
参数:call
the call which produced the result.
呼叫产生的结果。
参数:method
the cluster method that has been used.
已使用的聚类方法。
参数:dist.method
the distance that has been used to create d (only returned if the distance object has a "method" attribute).
已被用来创建距离d(只返回的距离,如果对象有一个"method"属性)。
注意----------Note----------
Xcluster is a C program made by Gavin Sherlock that performs hierarchical clustering, K-means and SOM.
xcluster是一个C程序由Gavin福尔摩斯进行分层聚类,K-手段和SOM。
Xcluster is copyrighted. To get or have information about Xcluster: http://genome-www.stanford.edu/~sherlock/cluster.html
xcluster的版权。为了获得或拥有的信息关于Xcluster:http://genome-www.stanford.edu/~福尔摩斯/ cluster.html的
作者(S)----------Author(s)----------
Antoine Lucas, <a href="http://mulcyber.toulouse.inra.fr/projects/amap/">http://mulcyber.toulouse.inra.fr/projects/amap/</a>
参考文献----------References----------
for Huge Clustering, R News, 2006, vol 6, issue 5 pages 58-60.
参见----------See Also----------
r2xcluster, xcluster2r,hclust, hcluster
r2xcluster,xcluster2r,hclust,hcluster
举例----------Examples----------
# Create data[创建数据]
set.seed(1)
m <- matrix(rep(1,3*24),ncol=3)
m[9:16,3] <- 3 ; m[17:24,] <- 3 #create 3 groups[创建3组]
m <- m+rnorm(24*3,0,0.5) #add noise[添加噪声]
m <- floor(10*m)/10 #just one digits[只是一个数字]
# And once you have Xcluster program:[一旦你有Xcluster方案:]
#[]
#h <- xcluster(m)[xcluster H < - (M)]
#[]
#plot(h) [图(H)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|