bgModel(cosmo)
bgModel()所属R语言包:cosmo
Estimating the background Markov model
估计背景马尔可夫模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
bgModel() obtains an estimate of the Markov model used by cosmo() for modeling the distribution of nucleotides that are not part of the motif. bgModel() can select the order of this model data-adaptively by likelihood-based cross-validation (a k-th order Markov model allows the probability of encountering the four different nucleotides in a given position to depend on the k previous nucleotides).
bgModel()获得COSMO()用于模拟核苷酸不属于主题的一部分分布马尔可夫模型的估计。 bgModel()可以选择这种模式的顺序数据自适应的可能性为基础的交叉验证(一个k阶Markov模型允许在一个给定的位置遇到四种不同的核苷酸的概率依赖于k上核苷酸)。
用法----------Usage----------
bgModel(seqs, order=NULL, fold = 5, maxOrder = 6)
参数----------Arguments----------
参数:seqs
This argument specifies the sequences that are to be used to estimate the background Markov model. If seqs == "browse", a browser appears that allows the user to select a file that contains the sequences in FASTA format. If seqs is another character string, it is assumed to give the path to a FASTA file containing the sequences of interest. Lastly, seqs may be a list with each element representing a sequence in the form of a single string such as "ACGTAGCTAG" ("seq" entry) and a description ("desc" entry).
此参数指定的序列被用来估计背景马尔可夫模型。如果seqs ==“浏览”,会出现一个浏览器,允许用户选择一个文件,该文件包含在FASTA格式的序列。 ,如果seqs是另一个字符串,它是假定给一个FASTA文件,其中包含利息序列路径。最后,seqs可能代表如的“ACGTAGCTAG”(“SEQ”项目)和描述(“desc”的条目)的单个字符串的形式序列与每个元素的列表。
参数:order
numerical The order of the Markov background model. If this argument is NULL, the order is selected data-adaptively by likelihood-based cross-validation. Otherwise, a Markov model for the specified order is estimated.
numerical马尔可夫背景模型的顺序。如果该参数为NULL,为了被选中的可能性为基础的交叉验证数据自适应。否则,按照指定的顺序马尔可夫模型估计。
参数:fold
numerical cross-validation fold for selecting order of background Markov model
numerical交叉验证选择背景马尔可夫模型的顺序倍
参数:maxOrder
numerical Maximum order to consider for Markov background model.
numerical最大的马尔可夫背景模型以考虑。
值----------Value----------
A list with the folowing elements:
与以上元素的列表:
参数:transMat
The estimated transition matrix for the background Markov model. This is a list of matrices, with the first matrix given the transition probabilities for the 0th order Markov model, the second matrix giving the transition probabilities for a 1st order Markov model, and so on.
背景马尔可夫模型估计的过渡矩阵。这是一个矩阵的名单,与第0阶Markov模型,给人的第一阶Markov模型的转移概率矩阵,等过渡概率的第一方阵。
参数:order
The selected order of the background Markov model.
背景马尔可夫模型的选定订单。
参数:klDivs
The Kullback-Leibler divergences for the different candidate orders for the background Markov model. Likelihood-based cross-validation selects the order with the minimum Kullback-Leibler divergence.
不同候选人的订单为背景马尔可夫模型的Kullback-Leibler距离的分歧。可能性为基础的交叉验证选择与最低的Kullback-Leibler距离的顺序。
作者(S)----------Author(s)----------
Oliver Bembom, <a href="mailto:bembom@berkeley.edu">bembom@berkeley.edu</a>
参见----------See Also----------
cosmo
cosmo
举例----------Examples----------
## path to example sequence file in FASTA format[#例如,在FASTA格式的序列文件的路径]
seqFile <- system.file("Exfiles","seq.fasta",package="cosmo")
## estimate transition matrix for order 2[#估计为2阶转换矩阵]
tmat1 <- bgModel(seqFile, order=2)
## select order data-adaptively[#选择订单数据自适应]
tmat2 <- bgModel(seqFile)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|