The empirical Receiver Operator Characteristic (ROC) is widely used for the evaluation of diagnostic tests, but also for the evaluation of classfiers. In this implementation, it can only be used for the binary classification case. The input are a numeric vector of class probabilities (which play the role of a test result) and the true class labels. Note that misclassifcation performance can (partly widely) differ from the Area under the ROC (AUC). This is due to the fact that misclassifcation rates are always computed for the threshold
经验的受试者工作特征(ROC)被广泛用于诊断测试的评价,同时也为的classfiers评价。在此实现,它只能用于二元分类情况。输入是一个数值向量类的概率(其中发挥作用的测试结果)和真正的类标签。请注意,misclassifcation性能(部分广)根据中华民国(AUC)的不同区域。这是由于,misclassifcation率总是阈值计算
参数----------Arguments----------
参数:object
An object of cloutput.
cloutput的对象。
参数:plot
Should the ROC curve be plotted ? Default is TRUE.
应绘制ROC曲线?默认TRUE。
参数:...
Argument to specifiy further graphical options.
参数说明指进一步的图形选项。
值----------Value----------
The empirical area under the curve (AUC).
曲线下面积(AUC)的实证面积。
作者(S)----------Author(s)----------
Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>