找回密码
 注册
查看: 721|回复: 0

R语言 CMA包 GenerateLearningsets()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 15:20:54 | 显示全部楼层 |阅读模式
GenerateLearningsets(CMA)
GenerateLearningsets()所属R语言包:CMA

                                        Repeated Divisions into learn- and tets sets
                                         重复分部学习和四面体套

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Due to very small sample sizes, the classical division learnset/testset does not give accurate information about the classification performance. Therefore, several different divisions should be used and aggregated. The implemented methods are discussed in Braga-Neto and Dougherty (2003) and Molinaro et al. (2005) whose terminology is adopted.
由于样本量非常小,古典的分工learnset,/ testset不准确的信息有关的分类性能。因此,应使用几个不同的部门,汇总。布拉加,内托和多尔蒂(2003)和莫利纳罗等人所实施的方法进行了讨论。 (2005)采用的术语。

This function is usually the basis for all deeper analyses.
此功能通常是所有更深入的分析的基础上。


用法----------Usage----------


GenerateLearningsets(n, y, method = c("LOOCV", "CV", "MCCV", "bootstrap"),
                     fold = NULL, niter = NULL, ntrain = NULL, strat = FALSE)



参数----------Arguments----------

参数:n
The total number of observations in the available data set. May be missing if y is provided instead.
在现有数据集的观测总数。可能是missing如果y。


参数:y
A vector of class labels, either numeric or a factor. Must be given if strat=TRUE or n is not specified.
一类标签的向量,要么numeric或factor。如果strat=TRUE或n没有指定必须给予。


参数:method
Which kind of scheme should be used to generate divisions into learning sets and test sets ? Can be one of the following:     
应采用哪一种方案生成师学习集和测试集?可以是下列之一:

"LOOCV"Leaving-One-Out Cross Validation.  
LOOCV“留一交叉验证。

"CV"(Ordinary) Cross-Validation. Note that fold must as well be specified.  
“简历”(普通)的交叉验证。注意fold以及被指定。

"MCCV"Monte-Carlo Cross Validation, i.e. random divisions into learning sets with ntrain(s.below) observations and tests sets with ntrain observations.  
的“MCCV”蒙特卡洛交叉验证,即深入学习ntrain(s.below)观察和测试集的随机部门设置ntrain意见。

"bootstrap"Learning sets are generated by drawing n times with replacement from all observations. Those not drawn not all form the test set.     
“引导”学习集生成绘制更换所有观测n倍。那些不画不是所有形式的测试集。


参数:fold
Gives the number of CV-groups. Used only when method="CV"
给人简历群体。只有当使用method="CV"


参数:niter
Number of iterations (s.details).
迭代次数(S.details).


参数:ntrain
Number of observations in the learning sets. Used only when method="MCCV".
在学习套的意见。只有当method="MCCV"使用。


参数:strat
Logical. Should stratified sampling be performed, i.e. the proportion of observations from each class in the learning sets be the same as in the whole data set ?  Does not apply for method = "LOOCV".                
逻辑。应该进行分层抽样,即从每类在学习观察的比例设置在整个数据集相同吗?不适用于method = "LOOCV"。


Details

详情----------Details----------

When method="CV", niter gives the number of times the whole CV-procedure is repeated. The output matrix has then foldxniter rows. When method="MCCV" or method="bootstrap", niter is simply the number of considered learning sets.
当method="CV",niter给整个简历的过程是重复的次数。输出矩阵foldXniter行。当method="MCCV"或method="bootstrap",niter简直是考虑学习组的数量。

Note that method="CV",fold=n is equivalent to method="LOOCV".
请注意,method="CV",fold=n相当于method="LOOCV"的。


值----------Value----------

An object of class learningsets
一个对象的类learningsets


作者(S)----------Author(s)----------


Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>

Anne-Laure Boulesteix <a href="mailto:boulesteix@ibe.med.uni-muenchen.de">boulesteix@ibe.med.uni-muenchen.de</a>

Christoph Bernau <a href="mailto:bernau@ibe.med.uni-muenchen.de">bernau@ibe.med.uni-muenchen.de</a>



参考文献----------References----------





methods.

CMA - A comprehensive Bioconductor package for supervised classification with high dimensional data. BMC Bioinformatics 9: 439

参见----------See Also----------

learningsets, GeneSelection, tune,
learningsets,GeneSelection,tune


举例----------Examples----------


# LOOCV[LOOCV]
loo <- GenerateLearningsets(n=40, method="LOOCV")
show(loo)
# five-fold-CV[五倍的简历]
CV5 <- GenerateLearningsets(n=40, method="CV", fold=5)
show(loo)
# MCCV[MCCV]
mccv <- GenerateLearningsets(n=40, method = "MCCV", niter=3, ntrain=30)
show(mccv)
# Bootstrap[引导]
boot <- GenerateLearningsets(n=40, method="bootstrap", niter=3)
# stratified five-fold-CV[分层五倍简历]
set.seed(113)
classlabels <- sample(1:3, size = 50, replace = TRUE, prob = c(0.3, 0.5, 0.2))
CV5strat <- GenerateLearningsets(y = classlabels, method="CV", fold=5, strat = TRUE)
show(CV5strat)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-13 04:58 , Processed in 0.025785 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表