gbmCMA(CMA)
gbmCMA()所属R语言包:CMA
Tree-based Gradient Boosting
基于树的梯度推进
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Roughly speaking, Boosting combines 'weak learners' in a weighted manner in a stronger ensemble. This method calls the function gbm.fit from the package gbm. The 'weak learners' are simple trees that need only very few splits (default: 1).
粗略地讲,在一个更强有力的合奏加权方式提高联合收割机的薄弱学习者。此方法调用gbm.fit包gbm功能。 “弱学习者需要简单的树木,只有极少数分裂(默认是:1)。
For S4 method information, see gbmCMA-methods.
S4方法的详细信息,请参阅gbmCMA-methods。
用法----------Usage----------
gbmCMA(X, y, f, learnind, models=FALSE,...)
参数----------Arguments----------
参数:X
Gene expression data. Can be one of the following:
基因表达数据。可以是下列之一:
A matrix. Rows correspond to observations, columns to variables.
Amatrix。行对应的观察,列变量。
A data.frame, when f is not missing (s. below).
一个data.frame时f不缺少(S.下面)。
An object of class ExpressionSet.
对象类ExpressionSet。
参数:y
Class labels. Can be one of the following:
类的标签。可以是下列之一:
A numeric vector.
一个numeric向量。
A factor.
Afactor。
A character if X is an ExpressionSet that specifies the phenotype variable.
一个如果character X是一个ExpressionSet指定的表型变量。
missing, if X is a data.frame and a proper formula f is provided.
missing,X是data.frame和适当的公式f提供。
WARNING: The class labels will be re-coded to range from 0 to K-1, where K is the total number of different classes in the learning set.
警告:类标签将被重新编码范围从0K-1,K是在学习集不同类别的总数。
参数:f
A two-sided formula, if X is a data.frame. The left part correspond to class labels, the right to variables.
一个双面的公式,如果X是data.frame。左边部分对应类的标签,对变量的权利。
参数:learnind
An index vector specifying the observations that belong to the learning set. May be missing; in that case, the learning set consists of all observations and predictions are made on the learning set.
索引向量指定属于学习集的意见。可能missing;在这种情况下,学习组学习集的所有意见和预测。
参数:models
a logical value indicating whether the model object shall be returned
一个逻辑值,该值指示是否应归还模型对象
参数:...
Further arguments passed to the function gbm.fit from the package of the same name. Worth mentionning are
进一步传递给函数的参数gbm.fit同名的软件包。值得mentionning
ntreesNumber of trees to fit (size of the ensemble), defaults to 100. This parameter should be optimized using tune.
ntrees数的树木,以适应合奏的大小,默认为100。此参数应优化使用tune。
shrinkageThe learning rate (default is 0.001). Usually fixed to a very low value.
shrinkage学习速率(默认值是0.001)。到一个非常低的值通常是固定的。
distributionLoss function to be used. Default is "bernoulli", i.e. LogitBoost, a (less robust) alternative is "adaboost".
distribution损失函数可以使用。默认是"bernoulli",即LogitBoost,(不太可靠)替代"adaboost"。
interaction.depthNumber of splits used by the 'weak learner' (single decision tree). Default is 1.
interaction.depth分裂的数量由“弱学习(单决策树)。默认1。
值----------Value----------
An onject of class cloutput.
一个类cloutputonject。
注意----------Note----------
Up to now, this method can only be applied to binary classification.
到现在为止,这种方法只能适用于二元分类。
作者(S)----------Author(s)----------
Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>
Anne-Laure Boulesteix <a href="mailto:boulesteix@ibe.med.uni-muenchen.de">boulesteix@ibe.med.uni-muenchen.de</a>
参考文献----------References----------
参见----------See Also----------
compBoostCMA, dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA, rfCMA,
compBoostCMA,dldaCMA,ElasticNetCMA,fdaCMA,flexdaCMA,knnCMA,ldaCMA,LassoCMA,nnetCMA,pknnCMA,plrCMA,pls_ldaCMA,pls_lrCMA,pls_rfCMA,pnnCMA,qdaCMA,rfCMA ,
举例----------Examples----------
### load Golub AML/ALL data[#负载戈卢布反洗钱/所有数据]
data(golub)
### extract class labels[#提取类标签]
golubY <- golub[,1]
### extract gene expression[#提取的基因表达]
golubX <- as.matrix(golub[,-1])
### select learningset[#选择learningset]
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run tree-based gradient boosting (no tuning)[#运行基于树的梯度推进(不调整)]
gbmresult <- gbmCMA(X=golubX, y=golubY, learnind=learnind, n.trees = 500)
show(gbmresult)
ftable(gbmresult)
plot(gbmresult)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|