gbmCMA-methods(CMA)
gbmCMA-methods()所属R语言包:CMA
Tree-based Gradient Boosting
基于树的梯度推进
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Roughly speaking, Boosting combines 'weak learners' in a weighted manner in a stronger ensemble. This method calls the function gbm.fit from the package gbm. The 'weak learners' are simple trees that need only very few splits (default: 1).
粗略地讲,在一个更强有力的合奏加权方式提高联合收割机的薄弱学习者。此方法调用gbm.fit包gbm功能。 “弱学习者需要简单的树木,只有极少数分裂(默认是:1)。
方法----------Methods----------
X = "matrix", y = "numeric", f = "missing" signature 1
=“矩阵”,Y =“数字”,F =“失踪”的签名1
X = "matrix", y = "factor", f = "missing" signature 2
=“矩阵”,Y =“因素”,F =“失踪”的签名2
X = "data.frame", y = "missing", f = "formula" signature 3
=“数据框”,Y =“失踪”,F =“公式”签名3
X = "ExpressionSet", y = "character", f = "missing" signature 4
=“ExpressionSet”,Y =“字符”=“失踪”的签名4
For further argument and output information, consult gbmCMA.
为进一步论证和输出信息,咨询gbmCMA.
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|