flexdaCMA-methods(CMA)
flexdaCMA-methods()所属R语言包:CMA
Flexible Discriminant Analysis
灵活的判别分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This method is experimental.
这种方法是实验。
It is easy to show that, after appropriate scaling of the predictor matrix X, Fisher's Linear Discriminant Analysis is equivalent to Discriminant Analysis in the space of the fitted values from the linear regression of the nlearn x K indicator matrix of the class labels on X. This gives rise to 'nonlinear discrimant analysis' methods that expand X in a suitable, more flexible basis. In order to avoid overfitting, penalization is used. In the implemented version, the linear model is replaced by a generalized additive one, using the package mgcv.
它很容易证明,适当的调整后的预测矩阵X,Fisher线性判别分析判别分析是相当于在空间nlearn x K指标矩阵的线性回归拟合值X类的标签。这引起了“的非线性discrimant分析的方法,扩大X在一个合适的,更灵活的基础。为了避免过拟合,处罚。在实施的版本,线性模型是由广义可加一取代,使用包mgcv。
方法----------Methods----------
X = "matrix", y = "numeric", f = "missing" signature 1
=“矩阵”,Y =“数字”,F =“失踪”的签名1
X = "matrix", y = "factor", f = "missing" signature 2
=“矩阵”,Y =“因素”,F =“失踪”的签名2
X = "data.frame", y = "missing", f = "formula" signature 3
=“数据框”,Y =“失踪”,F =“公式”签名3
X = "ExpressionSet", y = "character", f = "missing" signature 4
=“ExpressionSet”,Y =“字符”=“失踪”的签名4
For further argument and output information, consult flexdaCMA.
为进一步论证和输出信息,咨询flexdaCMA。
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|