compBoostCMA(CMA)
compBoostCMA()所属R语言包:CMA
Componentwise Boosting
的分支推进
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Roughly speaking, Boosting combines 'weak learners' in a weighted manner in a stronger ensemble.
粗略地讲,在一个更强有力的合奏加权方式提高联合收割机的薄弱学习者。
'Weak learners' here consist of linear functions in one component (variable), as proposed by Buehlmann and Yu (2003).
“弱的学习者在这里的一个组成部分(可变)由Buehlmann和玉(2003)提出,由线性函数。
It also generates sparsity and can as well be as used for variable selection alone. (s. GeneSelection).
它还产生稀疏,也可以作为变量选择单独使用。 (S.GeneSelection)。
For S4 method information, see compBoostCMA-methods.
S4方法的详细信息,请参阅compBoostCMA-methods.
用法----------Usage----------
compBoostCMA(X, y, f, learnind, loss = c("binomial", "exp", "quadratic"), mstop = 100, nu = 0.1, models=FALSE, ...)
参数----------Arguments----------
参数:X
Gene expression data. Can be one of the following:
基因表达数据。可以是下列之一:
A matrix. Rows correspond to observations, columns to variables.
Amatrix。行对应的观察,列变量。
A data.frame, when f is not missing (s. below).
一个data.frame时f不缺少(S.下面)。
An object of class ExpressionSet.
对象类ExpressionSet。
参数:y
Class labels. Can be one of the following:
类的标签。可以是下列之一:
A numeric vector.
一个numeric向量。
A factor.
Afactor。
A character if X is an ExpressionSet that specifies the phenotype variable.
一个如果character X是一个ExpressionSet指定的表型变量。
missing, if X is a data.frame and a proper formula f is provided.
missing,X是data.frame和适当的公式f提供。
WARNING: The class labels will be re-coded to range from 0 to K-1, where K is the total number of different classes in the learning set.
警告:类标签将被重新编码范围从0K-1,K是在学习集不同类别的总数。
参数:f
A two-sided formula, if X is a data.frame. The left part correspond to class labels, the right to variables.
一个双面的公式,如果X是data.frame。左边部分对应类的标签,对变量的权利。
参数:learnind
An index vector specifying the observations that belong to the learning set. May be missing; in that case, the learning set consists of all observations and predictions are made on the learning set.
索引向量指定属于学习集的意见。可能missing;在这种情况下,学习组学习集的所有意见和预测。
参数:loss
Character specifying the loss function - one of "binomial" (LogitBoost), "exp" (AdaBoost), "quadratic"(L2Boost).
字符指定损失函数 - "binomial"(LogitBoost),"exp"(AdaBoost的),“二次”(L2Boost)之一。
参数:mstop
Number of boosting iterations, i.e. number of updates to perform. The default (100) does not necessarily produce good results, therefore usage of tune for this argument is highly recommended.
提高迭代,即执行更新的数目。默认(100)并不一定产生好的结果,因此tune这种说法强烈建议使用。
参数:nu
Shrinkage factor applied to the update steps, defaults to 0.1. In most cases, it suffices to set nu to a very low value and to concentrate on the optimization of mstop.
收缩因子的更新步骤,默认为0.1。在大多数情况下,只需设置nu到一个很低的值,并集中精力优化mstop。
参数:models
a logical value indicating whether the model object shall be returned
一个逻辑值,该值指示是否应归还模型对象
参数:...
Currently unused arguments.
目前未使用的参数。
Details
详情----------Details----------
The method is partly based on code from the package mboost from T. Hothorn and P. Buehlmann.
该方法在一定程度上从包中的代码mboostT. Hothorn和体育Buehlmann的。
The algorithm for the multiclass case is described
为多例的算法描述
值----------Value----------
An object of class clvarseloutput.
对象类clvarseloutput。
作者(S)----------Author(s)----------
Martin Slawski <a href="mailto:ms@cs.uni-sb.de">ms@cs.uni-sb.de</a>
Anne-Laure Boulesteix <a href="mailto:boulesteix@ibe.med.uni-muenchen.de">boulesteix@ibe.med.uni-muenchen.de</a>
参考文献----------References----------
参见----------See Also----------
dldaCMA, ElasticNetCMA, fdaCMA, flexdaCMA, gbmCMA, knnCMA, ldaCMA, LassoCMA, nnetCMA, pknnCMA, plrCMA, pls_ldaCMA, pls_lrCMA, pls_rfCMA, pnnCMA, qdaCMA, rfCMA,
dldaCMA,ElasticNetCMA,fdaCMA,flexdaCMA,gbmCMA,knnCMA,ldaCMA,LassoCMA,nnetCMA,pknnCMA,plrCMA,pls_ldaCMA,pls_lrCMA,pls_rfCMA,pnnCMA,qdaCMA,rfCMA ,
举例----------Examples----------
### load Golub AML/ALL data[#负载戈卢布反洗钱/所有数据]
data(golub)
### extract class labels[#提取类标签]
golubY <- golub[,1]
### extract gene expression[#提取的基因表达]
golubX <- as.matrix(golub[,-1])
### select learningset[#选择learningset]
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run componentwise (logit)-boosting (not tuned)[#运行的分支(罗吉特)提高(不调整)]
result <- compBoostCMA(X=golubX, y=golubY, learnind=learnind, mstop = 500)
### show results[#显示结果]
show(result)
ftable(result)
plot(result)
### multiclass example:[#多类例如:]
### load Khan data[##负载汗数据]
data(khan)
### extract class labels[#提取类标签]
khanY <- khan[,1]
### extract gene expression[#提取的基因表达]
khanX <- as.matrix(khan[,-1])
### select learningset[#选择learningset]
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run componentwise multivariate (logit)-boosting (not tuned)[#运行的分支多元(罗吉特)提高(不调整)]
result <- compBoostCMA(X=khanX, y=khanY, learnind=learnind, mstop = 1000)
### show results[#显示结果]
show(result)
ftable(result)
plot(result)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|