找回密码
 注册
查看: 1363|回复: 0

R语言 zipfR包 zipfR-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-2 07:51:08 | 显示全部楼层 |阅读模式
zipfR-package(zipfR)
zipfR-package()所属R语言包:zipfR

                                         zipfR: lexical statistics in R
                                         在R zipfR:词汇统计

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The zipfR package performs Large-Number-of-Rare-Events (LNRE) modeling of (linguistic) type frequency distributions (Baayen 2001) and provides utilities to run various forms of lexical statistics analysis in R.
zipfR包进行大数量的稀土的活动(LNRE)建模(语言)型频率分布(Baayen 2001年),并提供工具来运行各种形式的词汇统计分析R.


Details

详细信息----------Details----------

The best way to get started with zipfR is to read the tutorial, which you can find via the HTML documentation (follow the Overview link); you can also download it from http://purl.org/stefan.evert/zipfR/
最好的方式开始与zipfR阅读教程,通过HTML文档(按照“概述”链接),你可以找到的,你也可以下载它从http://purl.org/stefan.evert/zipfR/

zipfR is released under the GNU General Public License (http://www.gnu.org/copyleft/gpl.html)
zipfR下发布的GNU通用公共许可证(http://www.gnu.org/copyleft/gpl.html)


(作者)----------Author(s)----------


Stefan Evert &lt;<a href="mailto:stefan.evert@uos.de">stefan.evert@uos.de</a>&gt; and Marco Baroni
&lt;<a href="mailto:marco.baroni@unitn.it">marco.baroni@unitn.it</a>&gt;

Maintainer: Stefan Evert &lt;<a href="mailto:stefan.evert@uos.de">stefan.evert@uos.de</a>&gt;




参考文献----------References----------


Dordrecht.
L眉deling and M. Kyt枚 (eds.), Corpus Linguistics. An International Handbook, chapter 39. Mouton de Gruyter, Berlin.
Pairs and Collocations. PhD Thesis, IMS, University of Stuttgart. URN urn:nbn:de:bsz:93-opus-23714 http://elib.uni-stuttgart.de/opus/volltexte/2005/2371/
sequences. Proceedings of JADT 2004, 411-422.
quality of word frequency models. Proceedings of Corpus Linguistics 2005.
other rare events in R. useR! 2006: The second R user conference.

参见----------See Also----------

The zipfR tutorial: available from http://purl.org/stefan.evert/zipfR/ and via the HTML documentation (by following the Overview link)
zipfR教程:,可从http://purl.org/stefan.evert/zipfR/和通过HTML文件(概述链接)

Some good entry points into the zipfR documentation are be spc, vgc, tfl, read.spc, read.tfl, read.vgc, lnre, lnre.vgc, plot.spc, plot.vgc
有一些很好的入口点到zipfR文档是spc,vgc,tfl,read.spc,read.tfl,read.vgc,lnre ,lnre.vgc,plot.spc,plot.vgc

The same authors also develop the corpora library (available on CRAN) supporting simple inferential statistics for corpus analysis
同一作者还开发了corpora库(CRAN)支持简单的推论统计语料分析

Harald Baayen's LEXSTATS tools: http://www.mpi.nl/world/persons/private/baayen/software.html
哈拉尔Baayen LEXSTATS工具:http://www.mpi.nl/world/persons/private/baayen/software.html

Stefan Evert's UCS tools: http://collocations.de/
斯特凡·埃弗特的UCS工具:http://collocations.de/的


实例----------Examples----------


## load Oliver Twist and Great Expectations frequency spectra[#负载雾都孤儿“和”远大前程“频谱]
data(DickensOliverTwist.spc)
data(DickensGreatExpectations.spc)

## check sample size and vocabulary and hapax counts[#检查样本的大小和词汇和hapax的计数]
N(DickensOliverTwist.spc)
V(DickensOliverTwist.spc)
Vm(DickensOliverTwist.spc,1)
N(DickensGreatExpectations.spc)
V(DickensGreatExpectations.spc)
Vm(DickensGreatExpectations.spc,1)

## compute binomially interpolated growth curves[#计算二项式插值的生长曲线]
ot.vgc <- vgc.interp(DickensOliverTwist.spc,(1:100)*1570)
ge.vgc <- vgc.interp(DickensGreatExpectations.spc,(1:100)*1865)

## plot them[#图]
plot(ot.vgc,ge.vgc,legend=c("Oliver Twist","Great Expectations"))

## load Dickens' works frequency spectrum[#加载狄更斯的作品频谱]
data(Dickens.spc)

## compute Zipf-Mandelbrot model from Dickens data[#计算齐普夫 - 曼德尔布罗从狄更斯数据模型]
## and look at model summary[#看看模型总结]
zm <- lnre("zm",Dickens.spc)
zm

## plot observed and expected spectrum[观察到的和预期的频谱#图]
zm.spc <- lnre.spc(zm,N(Dickens.spc))
plot(Dickens.spc,zm.spc)

## obtain expected V and V1 values at arbitrary sample sizes[#取得预期的V和V1值在任意样本量。]
EV(zm,1e+8)
EVm(zm,1,1e+8)

## generate expected V and V1 growth curves up to a sample size[#产生预期的V和V1增长的曲线样本大小。]
## of 10 million tokens and plot them, with vertical line at [#10万元标记,并绘制出来,与垂直线]
## estimation size[#估计大小]
ext.vgc <- lnre.vgc(zm,(1:100)*1e+5,m.max=1)
plot(ext.vgc,N0=N(zm),add.m=1)



转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-24 00:15 , Processed in 0.022746 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表