找回密码
 注册
查看: 767|回复: 0

R语言 wq包 seaKen()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 23:07:53 | 显示全部楼层 |阅读模式
seaKen(wq)
seaKen()所属R语言包:wq

                                         Seasonal and Regional Kendall test
                                         季节性和区域性Kendall检验

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Calculates the Seasonal or Regional Kendall test of significance, including an estimate of the Sen slope.
计算的季节性或区域肯德尔显着性检验,包括森斜坡的估计。


用法----------Usage----------


seaKen(x)

seaRoll(x, w = 5, rule = 2, plot = FALSE, ylab = NULL, legend = FALSE)



参数----------Arguments----------

参数:x
A time series vector.  
时间序列向量。


参数:w
The window width for “rolling” estimates of slope.  
“滚动式”的斜率估计的窗口宽度。


参数:rule
The rule number for excluding windows with excessive missing data.  
规则数量过多的丢失的数据不包括Windows。


参数:plot
Indicates if a plot should be drawn.  
表示如果图应制定。


参数:ylab
An optional y-axis label.  
一个可选的Y轴标签。


参数:legend
Indicates if the legend is drawn.  
指示绘制的传说。


Details

详细信息----------Details----------

The Seasonal Kendall tests were introduced by Hirsch et al. (1982) and are further described by Helsel and Hirsch (2002). The p-values provided here are the raw values, not the ones corrected for serial correlation among seasons. In any case, the raw values are recommended for series lengths less than 10 years.
赫希等人分别介绍了季节性Kendall测试。 (1982)和由Helsel和Hirsch(2002)进一步描述。的p值在这里所提供的原始值,而不是季节之间的序列相关校正。在任何情况下,被推荐为原始值系列长度少于10年。

The function seaRoll applies seaKen to rolling time windows of width w. A minimum w of five years is required. The only rules currently implemented are: (1) ignore missing data; and (2) report a result only if more than half the seasons are each missing less than half the possible comparisons between the first and last 20% of the years (Schertz et al. [1991] discuss these and related decisions about missing data).
的功能seaRoll适用于seaKen滚动时间窗口的宽度w。最低w五年是必需的。当前实施的唯一规则是:(1)忽略丢失的数据,和(2)报告结果,仅当超过一半的季节每个丢失的不到一半的可能的比较之间的第一和最后20%的年(Schertz的等人[1991]讨论这些丢失的数据和相关决定)。

If plot = TRUE in the latter function, a point plot will be drawn with the Sen slope plotted at the leading year of the trend window. Filled circles indicate p-value < 0.01, and a legend will be drawn if requested.
如果plot = TRUE在后者的功能,这一点图将被绘制,绘制森坡的趋势窗口中处于领先一年。实心圆表示p值<0.01,如果要求将绘制一个传奇。

Both functions can be used in conjunction with mts2ts to calculate a Regional Kendall test of significance for annualized data, along with a regional estimate of trend (Helsel and Frans 2006). See the examples below.
这两个函数可以用来配合mts2ts来计算区域肯德尔显着性检验年率数据,以及与区域趋势估计(Helsel和Frans 2006年)。请参见下面的例子。


值----------Value----------

seaKen returns a list with the following members:
seaKen返回一个列表,包括以下成员:


参数:sen.slope
Sen slope
森坡


参数:sen.slope.pct
Sen slope as percent of mean
森坡%,意味着


参数:p.value
significance of slope
斜坡意义


参数:miss
for each season, the fraction missing of slopes connecting first and last 20% of the years
每个季节,部分丢失的斜坡连接第一个和最后一个20%的年

seaRoll returns a matrix with one row per time window containing the Sen slope, the corresponding percent, and the p-value. Rows are labelled with the leading year of the window.
seaRoll返回一个矩阵的每行各一个时间窗口,该窗口包含森斜率,相应的%,和p-值。列标示的窗口与领先的一年。


参考文献----------References----------






参见----------See Also----------

mts2ts, trendHomog
mts2ts,trendHomog


实例----------Examples----------


chl27 <- sfbayChla[, 's27']
seaKen(chl27)
seaRoll(chl27)
seaRoll(chl27, plot = TRUE, legend = TRUE)
chl <-sfbayChla
seaKen(mts2ts(chl))  # too much missing data[过多丢失的数据]
seaKen(mts2ts(chl, seas = 2:4))  # better when just Feb-Apr, spring [更好的时候才二月至四月,春天]
    # bloom period, but last 4 stations still missing too much data.[开花期,但在过去的4站仍然缺少太多的数据。]
seaKen(mts2ts(chl[, 1:12], 2:4))  # more reliable result[更可靠的结果]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-24 21:01 , Processed in 0.020635 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表