找回密码
 注册
查看: 652|回复: 0

R语言 wmtsa包 wavDWPTWhitest()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 22:53:35 | 显示全部楼层 |阅读模式
wavDWPTWhitest(wmtsa)
wavDWPTWhitest()所属R语言包:wmtsa

                                        Seeks the whitest transform of a discrete wavelet packet transform (DWPT)
                                         寻求的雪白的变换,离散小波包变换(DWPT)

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function seeks the whitest orthonormal transform of a DWPT. The goal is to segment the normalized frequency interval [0, 1/2] into subintervals such that, within each subinterval, the variability of the (corresponding) spectral density function (SDF) is minimized, i.e., each segment of the SDF is as flat as possible. Given an N-point uniformly sampled time series X, and denoting W(j,n) as the DWPT crystal at level j and (sequency ordered) oscillation index n, this optimization is achieved as follows:
此功能的目的雪白的标准正交变换的DWPT。我们的目标是分部,在归一化频率间隔[0, 1/2]成子区间,使得每个子区间内的(对应的)频谱密度功能(SDF),变异性被最小化,即,每个分部的SDF平坦如可能。给定一个N点均匀采样时间序列X,表示W(j,n)作为级的DWPT水晶j和振荡指数(序数排序)n,这种优化是实现的如下所示:

  


1Perform a level J - 2 partial DWPT of X where J=floor(log2(N)). By definition, W(0,0)=X. Begin step 2 with j=n=0.
1Perform的水平J - 2的部分DWPT的X,其中J=floor(log2(N))。根据定义,W(0,0)=X。开始步骤2与j=n=0。




2Perform a white noise test on the current (parent) crystal: W(j,n). If it passes (or the current crystal is in the last decomposition level) retain the crystal. Otherwise, discard the current parent crystal and perform the white noise test on its children: W(j+1,2n) and W(j+1,2n+1).
2Perform白噪声测试电流(父)水晶:W(j,n)。如果通过(或目前的晶体是在最后分解)保留的结晶。否则,丢弃当前的父的晶体和执行的白噪声测试它的孩子:W(j+1,2n)和W(j+1,2n+1)。




3Repeat step 2 as many times as necessary until a suitable transform is found.
3重复步骤2需要多次,直到找到一个合适的变换。


用法----------Usage----------


wavDWPTWhitest(x, significance=0.05, test="port2", wavelet="s8", n.level=NULL)



参数----------Arguments----------

参数:x
a vector containing a uniformly-sampled real-valued time series or an object of class wavTransform.
一个向量,包含均匀采样的实值时间序列或对象类wavTransform。


参数:n.level
the number of decomposition levels.  This argument is used only if x is a time series. Default: floor(logb(length(x), base=2)) - 2.
的分解级别的数目。这种说法是只有x是一个时间序列。默认值:floor(logb(length(x), base=2)) - 2。


参数:significance
a numeric value on the interval (0,1) which qualitatively signifies the fraction of times that the white noise hypothesis is incorrectly rejected. The significance is used to calculate comparative chi-square distribution p x 100 percentage points where p=1 - significance (the chi-square degrees of freedom are estimated automatically within the specified white noise test). Default: 0.05.
定性标志着分数倍,白噪声的假设是不正确的拒绝的时间间隔上(0,1)的一个数字值。 significance被用来计算比较的卡方分布pX100个百分点,其中p=1 - significance(卡方自由度估计的范围内自动指定的白噪声试验)。默认值:0.05。


参数:test
a character string denoting the white noise test to use. Options are "port1", "port2", "port3" and "cumper" respresenting the Portmanteau I, II, III and cumulative periodogram tests, respectively. See the reference(s) for more details. Default: "port2".
一个字符串,表示白噪声测试使用。选项是"port1","port2","port3"和"cumper"表示有混成I,II,III和累积周期图测试的,分别。 (S)的更多详细信息,请参阅参考。默认值:"port2"。


参数:wavelet
a character string denoting the filter type. See wavDaubechies for details. This argument is used only if x is a time series. Default: "s8".
一个字符串,表示过滤器的类型。见wavDaubechies的详细信息。这种说法是只有x是一个时间序列。默认值:"s8"。


值----------Value----------

a list containing the level and osc vectors denoting the level and oscillation index, respectively, of the whitest transform.
一个list包含level和osc向量表示水平和振荡指标,分别雪白的变换。


参考文献----------References----------

D. B. Percival, S. Sardy and A. C. Davison, Wavestrapping Time Series: Adaptive Wavelet-Based Bootstrapping, in W. J. Fitzgerald, R. L. Smith, A. T. Walden and P. C. Young (Eds.), Nonlinear and Nonstationary Signal Processing, Cambridge, England: Cambridge University Press, 2001.

参见----------See Also----------


实例----------Examples----------


## calculate the DWPT of the sunspots series [#计算的DWPT的太阳黑子系列]
W <- wavDWPT(as.numeric(sunspots), wavelet="s8", n.levels=9)

## find the whitest transform based on the [#雪白的变换的基础上]
## Portmanteau I white noise test [#混成我白噪声测试]
z <- wavDWPTWhitest(W, test="port1")

print(z)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 00:07 , Processed in 0.018839 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表