wle.smooth(wle)
wle.smooth()所属R语言包:wle
Bandwidth selection for the normal kernel and normal model.
带宽的的正常内核和正常模式的选择。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The bandwidth of the kernel is choose for normal model and normal kernel in such a way a contaminated point costant times away from the mean of the distribution in scale units and mass level has a weight no bigger than weight.
带宽的内核是选择正常模式和正常的内核,在这样的一个污染点costant倍距离平均分布在秤台和质量level有一个重量不大于 weight。
用法----------Usage----------
wle.smooth(weight=0.31,costant=3,level=0.2,
dimension=1,raf="HD",interval=c(0.00001,0.5),
tol=10^-6,max.iter=1000)
参数----------Arguments----------
参数:weight
weights associated to an observation that is costant scale units away from the mean of the distribution.
相关联的一个观察是costant的刻度单位距离的分布的平均值的权重。
参数:costant
times the contaminated point mass is away from the mean of the distribution in scale units.
倍污染质点是远离的平均值的分布的标度单位。
参数:level
mass of the contaminated point.
受污染的点质量。
参数:dimension
dimension of the normal distribution.
尺寸正态分布。
参数:raf
type of Residual adjustment function to be use:
类型的残余调节功能,可以使用:
raf="HD": Hellinger Distance RAF,
raf="HD":Hellinger距离RAF,
raf="NED": Negative Exponential Disparity RAF,
raf="NED":负指数差异RAF,
raf="SCHI2": Symmetric Chi-Squared Disparity RAF.
raf="SCHI2":对称卡方差异皇家空军。
参数:interval
interval from which to search the root.
间隔从搜索根。
参数:tol
the absolute accuracy to be used to achieve convergence of the algorithm.
要使用的绝对精度实现算法的收敛性。
参数:max.iter
maximum number of iterations.
最大迭代次数。
Details
详细信息----------Details----------
The wle.smooth use uniroot function to solve the non linear equation. No handling error is provided yet. For the Symmetric Chi-Squared Disparity RAF you should use weight=0.2 and interavl=c(0.1,1) to have a solution.
wle.smooth使用uniroot函数来解决非线性方程。还没有处理错误。对于对称的卡方差异RAF你应该使用weight=0.2和interavl=c(0.1,1)有一个解决方案。
值----------Value----------
wle.smooth returns an object of class "wle.smooth".
wle.smooth返回一个对象的class"wle.smooth"的。
Only print method is implemented for this class.
只打印的方法来实现这个类。
The object returned by wle.smooth is a list with four components: root and f.root give the location of the root and the value of the function evaluated at that point. iter and estim.prec give the number of iterations used and an approximate estimated precision for root.
返回的对象wle.smooth是一个有四个分量列表:root和f.root的给根的位置和在该点的评价函数的值。迭代和estim.prec给使用的迭代的数量,和一个近似估计精度为根。
root is the value of the bandwidth.
root的带宽值。
(作者)----------Author(s)----------
Claudio Agostinelli
参考文献----------References----------
Agostinelli, C., (1998) Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi, Ph.D. thesis, Department of Statistics, University of Padova.
Markatou, M., Basu, A. and Lindsay, B.G. (1998) Weighted likelihood estimating equations with a bootstrap root search. Journal of the American Statistical Association, 93, 740-750.
Agostinelli, C., and Markatou, M., (2001) Test of hypotheses based on the Weighted Likelihood Methodology, Statistica Sinica, vol. 11, n. 2, 499-514.
参见----------See Also----------
uniroot, uniroot: one dimensional root finding.
uniroot, uniroot:一维根的发现。
实例----------Examples----------
library(wle)
wle.smooth()
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|