找回密码
 注册
查看: 439|回复: 0

R语言 wild1包 csm()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 22:31:43 | 显示全部楼层 |阅读模式
csm(wild1)
csm()所属R语言包:wild1

                                         Cause-specific estimates of mortality
                                         死亡原因估计

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

An implementation of the nonparametric cumulative incidence function estimator described by Heisey and Patterson (2006). Permits staggered entry ("left truncation" in survival literature).
非参数累积发生率函数估计的实现描述的海西和Patterson(2006)。许可证交错项(“左截断”的生存文学)。


用法----------Usage----------


csm(entry, exit, event, fate, cause, alpha = 0.10)



参数----------Arguments----------

参数:entry
A data vector of class "numeric", integer, or "chron", representing times of entry for individuals in the risk set.  
数据向量类"numeric",integer或"chron",表示时间的条目个人的风险集中。


参数:exit
A data vector of class "numeric", integer, or "chron", representing times of exit for individuals in the risk set.
数据向量类"numeric",integer或"chron",为个人的风险集中的退出表示时间。


参数:event
A data vector of class "numeric", integer, or "logical" describing departures of individuals from the risk set (0 or FALSE denotes censoring; 1 or TRUE denotes an event).  
数据向量类"numeric",integer或"logical"描述个人的离开从风险组(0或FALSE表示审查,“1 或TRUE表示事件)。


参数:fate
A data vector of class "numeric", "character", or "factor" describing fates of individuals.
数据向量类"numeric","character"或"factor"描述个人的命运。


参数:cause
A vector of class "numeric", integer, or "character" specifying fates attributed to the cause of interest.  For example, several fates [c("hunting","poaching","vehicle strike")] might be included in an estimate of anthropogenic mortality.   
一个向量类"numeric",integer或"character"指定的命运归结为利益的原因。例如,一些命运[c("hunting","poaching","vehicle strike")可能人为死亡率的估计。


参数:alpha
Optional alpha level used to compute 100*(1-alpha/2)% upper and lower bounds (a 100*(1-alpha)% confidence interval) for the cumulative incidence function.  Default is 0.10 (90% confidence interval).
可选的alpha水平来计算100 *(1-α/ 2)%的上限和下限(100 *(1-α)%置信区间)的累积发生率函数。默认值是0.10(90%置信区间)。


值----------Value----------

An object of classes "dataframe" and "csm".<br> <br> Columns include the following:<br> <br> <table summary="R valueblock"> <tr valign="top"><td> time </td> <td> Event time</td></tr> <tr valign="top"><td> n.event.all </td> <td> Number of events (all causes) occurring at time</td></tr> <tr valign="top"><td> n.risk.all </td> <td> Number of individuals at risk at time</td></tr> <tr valign="top"><td> survival.all </td> <td> Kaplan-Meier estimate of survival (all causes)</td></tr> <tr valign="top"><td> n.event.s </td> <td> Number of events due to fates in cause at time</td></tr> <tr valign="top"><td> n.risk.s </td> <td> Number of individuals at risk at time</td></tr> <tr valign="top"><td> survival.s </td> <td>  Kaplan-Meier survival estimate obtained by censoring mortalities due to fates not in cause</td></tr> <tr valign="top"><td> mort.rate </td> <td> Interval mortality rate</td></tr> <tr valign="top"><td> CIF </td> <td> Cumulative incidence function estimate of mortality</td></tr> <tr valign="top"><td> cumvar </td> <td> Variance of CIF</td></tr> <tr valign="top"><td> SE </td> <td> Standard error of CIF</td></tr> <tr valign="top"><td> ucl </td> <td> Upper 100*(1-alpha)% confidence limit for CIF</td></tr> <tr valign="top"><td> lcl </td> <td> Lower 100*(1-alpha)% confidence limit for CIF</td></tr> </table>
对象的类"dataframe"和"csm"。的参考<BR>列包括以下内容:<BR> <BR> <table summary="R valueblock"> <tr valign="top"> <TD>  time  </ TD> <TD>活动时间</ TD> </ TR> <tr valign="top"> <TD> n.event.all  </ TD> <TD>数事件(各种原因)发生在time</ TD> </ TR> <tr valign="top"> <TD> n.risk.all  </ TD> <TD>的高危人群 time</ TD> </ TR> <tr valign="top"> <TD>  survival.all  </ TD> <TD> Kaplan-Meier法估计生存(所有原因)</ TD> < / TR> <tr valign="top"> <TD>  n.event.s  </ TD> <TD>的事件,由于命运causetime</ TD> </ TR> <tr valign="top"> <TD> n.risk.s  </ TD> <TD>的个人风险time</ TD> </ TR> <TR VALIGN =“顶“> <TD>  survival.s  </ TD> <TD> Kaplan-Meier生存估计通过审查死亡率由于命运并不在cause </ TD> </ TR> <TR VALIGN =”顶部“> <TD>  mort.rate  </ TD> <TD>间隔死亡率</ TD> </ TR> <tr valign="top"> <TD>  CIF </ TD> <TD >累积发生率函数估计的死亡率</ TD> </ TR> <tr valign="top"> <TD>  cumvar </ TD> <TD>方差CIF </ TD> < / TR> <tr valign="top"> <TD>  SE  </ TD> <TD>的标准误差CIF</ TD> </ TR> <tr valign="top"> <TD>  ucl  </ TD> <TD>上100 *(1-α)%可信限为CIF </ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD>下100 *(1-α)%置信区间为CIF </ TD> </ TR> </ TABLE>


注意----------Note----------

Modified from SPLUS code provided by Heisey and Patterson (2006) to 1) run in R, 2) permit more flexible input, 3) check data for a number of foreseeable errors, 4) support grouping of fates as a single cause, and 5) facilitate operations with output.
修改从海西和Patterson(2006):1)在R,2)S-PLUS提供的代码允许更灵活的输入,3)检查数据的一些可预见的错误,4)支持分组的命运,作为一个单一的原因,的输出),便于操作。

Intervals defined by entry and exit are open on the left and closed on the right, i.e., event time is given by exit and interval is (entry, exit].
给出了entry和间隔是exit,exit和(entry, exit]是离开的权利,即关闭事件时间定义区间。


(作者)----------Author(s)----------



Glen A. Sargeant<br>
U.S. Geological Survey<br>
Northern Prairie Wildlife Research Center<br>
<a href="mailto:glen_sargeant@usgs.gov">glen_sargeant@usgs.gov</a>




参考文献----------References----------

Heisey, D. M., and B. R. Patterson. 2006. A review of methods to estimate cause-specific mortality in presence of competing risks. Journal of Wildlife Management 70(6):1544-1555

参见----------See Also----------

chron
chron

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 03:03 , Processed in 0.019855 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表